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 Let G be a finite simple graph with vertex set V(G) = {v1, v2, v3, …, vn} and 

edge set E(G). The adjacency matrix of G is an (nn)-matrix A(G) = [aij] where 

aij = 1 if vivj  E(G) and aij = 0 elsewhere, and the degree matrix of G is a 

diagonal (nn)-matrix D(G) = [dij] where dii = degG(vi) and dij = 0 for i ≠ j. The 

Laplacian matrix of G is L(G) = D(G) – A(G) and the signless Laplacian matrix 

of G is Q(G) = D(G) + A(G). The study of spectrum of Laplacian and signless 

Laplacian matrix of graph are interesting topic till today. In this paper, we 

determine the Laplacian and signless Laplacian spectra of complete 

multipartite graphs. 
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1. INTRODUCTION 

Let G be a finite graph without loop and multiple edges of order n (n ≥ 1). Let its vertex set is V(G) = 

{v1, v2, v3, …, vn} and edge set is E(G). The adjacency matrix of G is an (nn)-matrix A(G) = [aij] where aij = 

1 if vivj  E(G) and aij = 0 elsewhere [1]. The degree matrix of G is a diagonal (nn)-matrix D(G) = [dij] where 

dii = degG(vi) and dij = 0 for i ≠ j [2]. The Laplacian matrix L(G) of G is defined by L(G) = D(G) – A(G) and the 

signless Laplacian matrix Q(G) of G is defined by Q(G) = D(G) + A(G) [3].  

Let 1, 2, …, 𝜆𝑘 where 1 > 2 > … > 𝑘 are distinct eigenvalues from a matrix of graph G and let 

m(1), m(2), …, m(𝑘) are algebraic multiplicities of i, i = 1, 2, ..., k. The spectrum of graph G is (2k)-matrix 

that contains 1, 2, …, 𝑘 for the first row and m(1), m(2), …, m(𝑘) for the second row and denoted by 

Spec(G) [3]. The Laplacian spectrum of G is the spectrum of Laplacian matrix of G and denoted by SpecL(G). 

The signless Laplacian spectrum of G is the spectrum of signless Laplacian matrix of graph G and denoted by 

SpecQ(G). 

Some results on Laplacian and signless Laplacian spectrum of graphs have been reported, for 

examples the properties of Laplacian spectra of a graph and Laplacian integral graphs [4, 5], the Laplacian 

spectrum of complex networks [6], the Laplacian spectrum of graph obtained from Kl by adhering the root of 

isomorphic trees T to every vertex of Kl [7], the Laplacian spectrum of weakly quasi-threshold graphs [8], the 

signless Laplacian spectrum of coronae [9], the Laplacian spectrum of non-commuting of dihedral group [10], 

the Laplacian spectrum of some graphs [11], the Laplacian spectra of graphs and complex networks [12], the 

(signless) Laplacian spectral of the line graphs of lollipop graphs [13], the Laplacian spectrum of neural 

networks [14], and the Laplacian spectra of product graphs [15]. Several studies relating to Laplacian and 
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signless Laplacian matrix have been reported such as [16-23]. In this paper, we determine the Laplacian and 

signless Laplacian spectra of complete multipartite graphs.  

Graph G is said to be complete n-partite if vertex set of G can be partitioned into n partite sets V1, V2, 

…, Vn such that if u  Vi and v  Vj then uv  E(G) for i ≠ j. A complete n-partite graph for some integer n ≥ 

2 is called a complete multipartite graph[1]. If |𝑉𝑖| = 𝛼𝑖 for all i (i = 1, 2, …, n) then graph G be denoted by 

𝐾(𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛). If 𝛼𝑖 = t for all i then the complete n-partite graph 𝐾(𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛) be denoted by 

𝐾𝑛(𝑡). So, the complete n-partite graph 𝐾𝑛(1) is the complete graph Kn. If 𝛼𝑖 = t for i = 1, 2, …, n-1 and  𝛼𝑛 =
𝑠 then we denoted 𝐾𝑛−1(𝑡)(𝑠) instead of 𝐾(𝛼1, 𝛼2, 𝛼3, … , 𝛼𝑛).  
 

 

2. RESEARCH METHOD 

We use the library research method to determine Laplacian and signless Laplacian spectra of complete 

multipartite graphs. We begin by observing specific cases of Laplacian and signless Laplacian spectra of 

complete multipartite graphs. The next step is analyzing the characteristic polynomial and spectrum pattern of 

these specific cases to obtain general pattern. The last is present the result as a theorem with its proof. 

 

 

3. RESULTS 

Now, we present our results on the Laplacian spectra for several complete multipartite graphs.  

Theorem 1: The Laplacian spectrum of complete bipartite graph K2(m) for m ≥ 2 and 𝑚 ∈ ℕ is 

 𝑠𝑝𝑒𝑐𝐿(𝐾2(𝑚)) = [
2𝑚 𝑚 0
1 2(𝑚 − 1) 1

] 

Proof: By eliminating matrix (L(K2(m)) - I) to an upper triangular matrix, we have the characteristic 

polynomial of Laplacian matrix L(K2(m)) is 𝑝(𝜆) = 𝜆(𝜆 − 𝑚)2(𝑚−1)(𝜆 − 2𝑚). Therefore, eigenvalues of 

L(K2(m)) are 2m, m and 0, and their algebraic multiplicities are 1, 2(m-1) and 1, respectively. So, we have the 

complete proof.   

Theorem 2: The Laplacian spectrum of complete tripartite graph K3(m) for m ≥ 2 and 𝑚 ∈ ℕ is 

𝑠𝑝𝑒𝑐𝐿(𝐾3(𝑚)) = [
3𝑚 2𝑚 0
2 3(𝑚 − 1) 1

] 

Proof: The characteristic polynomial of Laplacian matrix L(K2(m)) is 𝑝(𝜆) = 𝜆(𝜆 − 2𝑚)3(𝑚−1)(𝜆 − 3𝑚)2.  

 For more general case, we have the following theorem. 

Theorem 3: The Laplacian spectrum of complete multipartite graph 𝐾𝑛(𝑚) for m ≥ 2 and 𝑚 ∈ ℕ is 

𝑠𝑝𝑒𝑐𝐿(𝐾𝑛(𝑚)) = [
𝑛𝑚 (𝑛 − 1)𝑚 0
𝑛 − 1 𝑛(𝑚 − 1) 1

] 

Proof: It is enough to show the characteristic polynomial of 𝐿(𝐾𝑛(𝑚)). The degree of all vertices in complete 

multipartite 𝐾𝑛(𝑚) is (𝑛 − 1)𝑚. So, the degree matrix of 𝐾𝑛(𝑚) is 𝐷(𝐾𝑛(𝑚)) = (𝑛 − 1)𝑚𝐼, where I is 

identity matrix of order nm. According to the definition of Laplacian matrix, we have 𝐿(𝐾𝑛(𝑚)) = 

𝐷(𝐾𝑛(𝑚)) − 𝐴(𝐾𝑛(𝑚)). Appling Gauss-Jordan elimination method for 𝐿(𝐾𝑛(𝑚)) − 𝜆𝐼, we will have a 

diagonal matrix with no zero in its main diagonal. By multiplying all elements in the main diagonal, we have 

the characteristic polynomial of 𝐿(𝐾𝑛(𝑚)) is 𝑝(𝜆) = 𝜆(𝜆 − (𝑛 − 1)𝑚)𝑛(𝑚−1)(𝜆 − 𝑛𝑚)𝑛−1. It completes the 

proof.  

Theorem 4: The Laplacian spectrum of complete bipartite graph K(m, m+1) for m ≥ 2 and 𝑚 ∈ ℕ is 

𝑠𝑝𝑒𝑐𝐿(𝐾(𝑚,𝑚 + 1)) = [
2𝑚 + 1 𝑚 + 1 𝑚 0

1 𝑚 − 1 𝑚 1
] 

Proof: We can compute that characteristic polynomial of Laplacian matrix 𝐿(𝐾(𝑚,𝑚 + 1)) is  

𝑝(𝜆) = 𝜆(𝜆 − 𝑚)𝑚(𝜆 − (𝑚 + 1))
𝑚−1

(𝜆 − (2𝑚 + 1)).  

Theorem 5: The Laplacian spectrum of complete multipartite graph 𝐾𝑛(1)(2) for 𝑛 ∈ ℕ is 

𝑠𝑝𝑒𝑐𝐿(𝐾𝑛(𝑚)) = [
𝑛 + 2 𝑛 0
𝑛 1 1

] 

Proof: It is easy to check that characteristic polynomial of Laplacian matrix 𝐿(𝐾𝑛(1)(2)) is  

𝑝(𝜆) = 𝜆(𝜆 − 𝑛)(𝜆 − (𝑛 + 2))𝑛.  

 The following two theorems are special case for the next theorem. 

Theorem 6: The Laplacian spectrum of complete multipartite graph 𝐾𝑛(2)(3) for 𝑛 ∈ ℕ is  

𝑠𝑝𝑒𝑐𝐿(𝐾𝑛(2)(3)) = [
2𝑛 + 3 2𝑛 + 1 2𝑛 0

𝑛 𝑛 2 1
] 
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Proof: The characteristic polynomial of Laplacian matrix 𝐿(𝐾𝑛(2)(3)) is  

𝑝(𝜆) = 𝜆(𝜆 − 2𝑛)2(𝜆 − (2𝑛 + 1))𝑛(𝜆 − (2𝑛 + 3))𝑛.  

Theorem 7: The Laplacian spectrum of complete multipartite graph 𝐾𝑛(3)(4) for 𝑛 ∈ ℕ is  

𝑠𝑝𝑒𝑐𝐿(𝐾𝑛(3)(4)) = [
3𝑛 + 4 3𝑛 + 1 3𝑛 0

𝑛 2𝑛 3 1
] 

Proof: The characteristic polynomial of Laplacian matrix 𝐿(𝐾𝑛(3)(4)) is  

𝑝(𝜆) = 𝜆(𝜆 − 3𝑛)3(𝜆 − (3𝑛 + 1))2𝑛(𝜆 − (3𝑛 + 4))𝑛.  

 From Theorem 6 and Theorem 7, if we set n = 1 then we have 𝐾1(2)(3) = 𝐾(2)(3) and 𝐾1(3)(4) = 

𝐾(3)(4). We see that the Laplacian spectra for these two graphs can be computed using Theorem 4. For more 

general result, we have the following theorem.  

Theorem 8: The Laplacian spectrum of complete multipartite graph 𝐾𝑛(𝑚)(𝑚 + 1) for m, 𝑛 ∈ ℕ and m ≥ 2 is  

𝑠𝑝𝑒𝑐𝐿(𝐾𝑛(𝑚)(𝑚 + 1)) = [
𝑛𝑚 +𝑚 + 1 𝑛𝑚 + 1 𝑛𝑚 0

𝑛 𝑛(𝑚 − 1) 𝑚 1
] 

Proof: We can observe that characteristic polynomial of Laplacian matrix 𝐿(𝐾𝑛(1)(2)) is  

𝑝(𝜆) = 𝜆(𝜆 − 𝑚𝑛)𝑚(𝜆 − (𝑚𝑛 + 1))(𝑚−1)𝑛(𝜆 − (𝑚𝑛 + 𝑚 + 1))𝑛 

The following theorem can be used to determine the Laplacian spectrum of complete multipartite 

graph K(1, 2, 3, …, n) for 𝑛 ∈ ℕ and n ≥ 2. 

Theorem 9: The characteristic polynomial of L(K(1, 2, 3, …, n) for 𝑛 ∈ ℕ and n ≥ 2 is  

𝑝(𝜆) = 𝜆 (𝜆 − (
𝑛(𝑛 + 1)

2
− 𝑛))

𝑛−1

(𝜆 − (
𝑛(𝑛 + 1)

2
− (𝑛 − 1)))

𝑛−2

⋯(𝜆

− (
𝑛(𝑛 + 1)

2
))(𝜆 − (

𝑛(𝑛 + 1)

2
))

𝑛−1

 

Proof: Using Gaussian elimination method to Laplacian matrix L(K(1, 2, 3, …, n) will leads to the desired 

result.  

Theorem 10: The signless Laplacian spectrum of complete bipartite graph K2(m) for 𝑚 ∈ ℕ and m ≥ 2 is  

𝑠𝑝𝑒𝑐𝐿(𝐾2(𝑚)) = [
2𝑚 𝑚 0
1 2(𝑚 − 1) 1

] 

Proof: By the fact that Laplacian spectrum and signless Laplacian spectrum of bipartite graphs are always 

equal, then the proof follows from Theorem 1.  

Theorem 11: The signless Laplacian spectrum of complete tripartite graph K3(m) for 𝑚 ∈ ℕ and m ≥ 2 is  

𝑠𝑝𝑒𝑐𝐿(𝐾2(𝑚)) = [
4𝑚 2𝑚 𝑚
1 3(𝑚 − 1) 2

] 

Proof: We can observe that characteristic polynomial of signless Laplacian matrix Q(K3(m)) is  

𝑝(𝜆) = (𝜆 − 4𝑚)(𝜆 − 2𝑚)3(𝑚−1)(𝜆 − 𝑚)2.  

Theorem 12: The signless Laplacian spectrum of complete bipartite graph K(m, m+1) for m ≥ 2 and 𝑚 ∈ ℕ is 

𝑠𝑝𝑒𝑐𝐿(𝐾(𝑚,𝑚 + 1)) = [
2𝑚 + 1 𝑚 + 1 𝑚 0

1 𝑚 − 1 𝑚 1
] 

Proof: By the fact that Laplacian spectrum and signless Laplacian spectrum of bipartite graphs are always 

equal, then the proof follows from Theorem 4.  

 The following theorem is presented without proof. It is easy to be observed from the characteristic 

polynomial of the Laplacian matrix of 𝐾𝑛(1)(2) for 𝑛 ∈ ℕ. 

Theorem 13: The Laplacian spectrum of complete multipartite graph 𝐾𝑛(1)(2) for 𝑛 ∈ ℕ is 

𝑠𝑝𝑒𝑐𝐿(𝐾𝑛(𝑚)) = [
3𝑛

2
+ √

13𝑛 − 6

4
𝑛

3𝑛

2
− √

13𝑛 − 6

4

1 𝑛 1

] 

 

 

4. CONCLUSION 

We have determined the Laplacian and signless Laplacian spectra of several complete multipartite 

graphs. Because there are many kinds of complete multipartite graphs according to the cardinality of each 

partition sets, so the further studies can be done to determine the Laplacian and signless Laplacian spectra of 
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another complete multipartite graphs. Further studies also can be done to determine another spectrum of these 

graphs.   
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