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Let G be a finite simple graph with vertex set V(G) = {v1, v2, v3, …, vn} and 
edge set E(G). The adjacency matrix of G is an (n×n)-matrix A(G) = [aij] 
where aij = 1 if vivj ∈ E(G) and aij = 0 elsewhere, and the degree matrix of 
G is a diagonal (n×n)-matrix D(G) = [dij] where dii = degG(vi) and dij = 0 for 
i ≠ j. The Laplacian matrix of G is L(G) = D(G) – A(G) and the signless 
Laplacian matrix of G is Q(G) = D(G) + A(G). The study of spectrum of 
Laplacian and signless Laplacian matrix of graph are interesting topic till 
today. In this paper, we determine the Laplacian and signless Laplacian 
spectra of complete multipartite graphs. 
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1. INTRODUCTION 

Let G be a finite graph without loop and multiple edges of order n (n ≥ 1). Let its vertex set is V(G) = 
{v1, v2, v3, …, vn} and edge set is E(G). The adjacency matrix of G is an (n×n)-matrix A(G) = [aij] where aij = 1 if 
vivj ∈ E(G) and aij = 0 elsewhere [1]. The degree matrix of G is a diagonal (n×n)-matrix D(G) = [dij] where dii = 
degG(vi) and dij = 0 for i ≠ j [2]. The Laplacian matrix L(G) of G is defined by L(G) = D(G) – A(G) and the signless 
Laplacian matrix Q(G) of G is defined by Q(G) = D(G) + A(G) [3].  

Let λ1, λ2, …, 𝜆𝜆𝑘𝑘 where λ1 > λ2 > … > λ𝑘𝑘 are distinct eigenvalues from a matrix of graph G and let m(λ1), 
m(λ2), …, m(λ𝑘𝑘) are algebraic multiplicities of λi, i = 1, 2, ..., k. The spectrum of graph G is (2×k)-matrix that 
contains λ1, λ2, …, λ𝑘𝑘 for the first row and m(λ1), m(λ2), …, m(λ𝑘𝑘) for the second row and denoted by Spec(G) 
[3]. The Laplacian spectrum of G is the spectrum of Laplacian matrix of G and denoted by SpecL(G). The signless 
Laplacian spectrum of G is the spectrum of signless Laplacian matrix of graph G and denoted by SpecQ(G). 

Some results on Laplacian and signless Laplacian spectrum of graphs have been reported, for examples 
the properties of Laplacian spectra of a graph and Laplacian integral graphs [4, 5], the Laplacian spectrum of 
complex networks [6], the Laplacian spectrum of graph obtained from Kl by adhering the root of isomorphic trees 
T to every vertex of Kl [7], the Laplacian spectrum of weakly quasi-threshold graphs [8], the signless Laplacian 
spectrum of coronae [9], the Laplacian spectrum of non-commuting of dihedral group [10], the Laplacian spectrum 
of some graphs [11], the Laplacian spectra of graphs and complex networks [12], the (signless) Laplacian spectral 
of the line graphs of lollipop graphs [13], the Laplacian spectrum of neural networks [14], and the Laplacian 
spectra of product graphs [15]. Several studies relating to Laplacian and signless Laplacian matrix have been 
reported such as [16-23]. In this paper, we determine the Laplacian and signless Laplacian spectra of complete 
multipartite graphs.  

Graph G is said to be complete n-partite if vertex set of G can be partitioned into n partite sets V1, V2, …, 
Vn such that if u ∈ Vi and v ∈ Vj then uv ∈ E(G) for i ≠ j. A complete n-partite graph for some integer n ≥ 2 is 
called a complete multipartite graph[1]. If |𝑉𝑉𝑖𝑖| = 𝛼𝛼𝑖𝑖  for all i (i = 1, 2, …, n) then graph G be denoted by 
𝐾𝐾(𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, … ,𝛼𝛼𝑛𝑛). If 𝛼𝛼𝑖𝑖 = t for all i then the complete n-partite graph 𝐾𝐾(𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, … ,𝛼𝛼𝑛𝑛) be denoted by 𝐾𝐾𝑛𝑛(𝑡𝑡). 

mailto:sakir@mat.uin-malang.ac.id


Proceeding of International Conference on Green Technology 
Vol.8, No.1, October 2017, pp. 335-338 
p-ISSN: 2580-7080 – e-ISSN: 2580-7099  P a g e  | 336 
 
 

 
 

So, the complete n-partite graph 𝐾𝐾𝑛𝑛(1) is the complete graph Kn. If 𝛼𝛼𝑖𝑖 = t for i = 1, 2, …, n-1 and  𝛼𝛼𝑛𝑛 = 𝑠𝑠 then 
we denoted 𝐾𝐾𝑛𝑛−1(𝑡𝑡)(𝑠𝑠) instead of 𝐾𝐾(𝛼𝛼1,𝛼𝛼2,𝛼𝛼3, … ,𝛼𝛼𝑛𝑛).  

 
2. RESEARCH METHOD  

We use the library research method to determine Laplacian and signless Laplacian spectra of complete 
multipartite graphs. We begin by observing specific cases of Laplacian and signless Laplacian spectra of complete 
multipartite graphs. The next step is analyzing the polynomial and spectrum pattern of these specific cases to 
obtain general pattern. The last is present the result as a theorem with its proof. 

 
3. RESULTS AND DISCUSSION 

Now, we present our results on the Laplacian spectra for several complete multipartite graphs.  
Theorem 1: The Laplacian spectrum of complete bipartite graph K2(m) for m ≥ 2 and 𝑚𝑚 ∈ ℕ is 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿�𝐾𝐾2(𝑚𝑚)� = �2𝑚𝑚 𝑚𝑚 0
1 2(𝑚𝑚 − 1) 1� 

Proof: By eliminating matrix (L(K2(m)) - λI) to an upper triangular matrix, we have the characteristic 
polynomial of Laplacian matrix L(K2(m)) is 𝑠𝑠(𝜆𝜆) = 𝜆𝜆(𝜆𝜆 −𝑚𝑚)2(𝑚𝑚−1)(𝜆𝜆 − 2𝑚𝑚) . Therefore, eigenvalues of 
L(K2(m)) are 2m, m and 0, and their algebraic multiplicities are 1, 2(m-1) and 1, respectively. So, we have the 
complete proof. �  

Theorem 2: The Laplacian spectrum of complete tripartite graph K3(m) for m ≥ 2 and 𝑚𝑚 ∈ ℕ is 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿�𝐾𝐾3(𝑚𝑚)� = �3𝑚𝑚 2𝑚𝑚 0
2 3(𝑚𝑚 − 1) 1� 

Proof: The characteristic polynomial of Laplacian matrix L(K2(m)) is 𝑠𝑠(𝜆𝜆) = 𝜆𝜆(𝜆𝜆 − 2𝑚𝑚)3(𝑚𝑚−1)(𝜆𝜆 − 3𝑚𝑚)2. 
� 

 For more general case, we have the following theorem. 
Theorem 3: The Laplacian spectrum of complete multipartite graph 𝐾𝐾𝑛𝑛(𝑚𝑚) for m ≥ 2 and 𝑚𝑚 ∈ ℕ is 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿�𝐾𝐾𝑛𝑛(𝑚𝑚)� = � 𝑛𝑛𝑚𝑚 (𝑛𝑛 − 1)𝑚𝑚 0
𝑛𝑛 − 1 𝑛𝑛(𝑚𝑚− 1) 1� 

Proof: It is enough to show the characteristic polynomial of 𝐿𝐿(𝐾𝐾𝑛𝑛(𝑚𝑚)). The degree of all vertices in 
complete multipartite 𝐾𝐾𝑛𝑛(𝑚𝑚) is (𝑛𝑛 − 1)𝑚𝑚. So, the degree matrix of 𝐾𝐾𝑛𝑛(𝑚𝑚) is 𝐷𝐷(𝐾𝐾𝑛𝑛(𝑚𝑚)) = (𝑛𝑛 − 1)𝑚𝑚𝑚𝑚, where I 
is identity matrix of order nm. According to the definition of Laplacian matrix, we have 𝐿𝐿(𝐾𝐾𝑛𝑛(𝑚𝑚)) = 
𝐷𝐷�𝐾𝐾𝑛𝑛(𝑚𝑚)� − 𝐴𝐴(𝐾𝐾𝑛𝑛(𝑚𝑚)). Appling Gauss-Jordan elimination method for 𝐿𝐿�𝐾𝐾𝑛𝑛(𝑚𝑚)� − 𝜆𝜆𝑚𝑚, we will have a diagonal 
matrix with no zero in its main diagonal. By multiplying all elements in the main diagonal, we have the 
characteristic polynomial of 𝐿𝐿(𝐾𝐾𝑛𝑛(𝑚𝑚)) is 𝑠𝑠(𝜆𝜆) = 𝜆𝜆(𝜆𝜆 − (𝑛𝑛 − 1)𝑚𝑚)𝑛𝑛(𝑚𝑚−1)(𝜆𝜆 − 𝑛𝑛𝑚𝑚)𝑛𝑛−1. It completes the proof. 
� 

Theorem 4: The Laplacian spectrum of complete bipartite graph K(m, m+1) for m ≥ 2 and 𝑚𝑚 ∈ ℕ is 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿�𝐾𝐾(𝑚𝑚,𝑚𝑚 + 1)� = �2𝑚𝑚 + 1 𝑚𝑚 + 1 𝑚𝑚 0

1 𝑚𝑚 − 1 𝑚𝑚 1� 
Proof: We can compute that characteristic polynomial of Laplacian matrix 𝐿𝐿(𝐾𝐾(𝑚𝑚,𝑚𝑚 + 1)) is  
𝑠𝑠(𝜆𝜆) = 𝜆𝜆(𝜆𝜆 − 𝑚𝑚)𝑚𝑚�𝜆𝜆 − (𝑚𝑚 + 1)�𝑚𝑚−1(𝜆𝜆 − (2𝑚𝑚 + 1)). � 
Theorem 5: The Laplacian spectrum of complete multipartite graph 𝐾𝐾𝑛𝑛(1)(2) for 𝑛𝑛 ∈ ℕ is 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿�𝐾𝐾𝑛𝑛(𝑚𝑚)� = �𝑛𝑛 + 2 𝑛𝑛 0
𝑛𝑛 1 1� 

Proof: It is easy to check that characteristic polynomial of Laplacian matrix 𝐿𝐿(𝐾𝐾𝑛𝑛(1)(2)) is  
𝑠𝑠(𝜆𝜆) = 𝜆𝜆(𝜆𝜆 − 𝑛𝑛)(𝜆𝜆 − (𝑛𝑛 + 2))𝑛𝑛. � 
 The following two theorems are special case for the next theorem. 
Theorem 6: The Laplacian spectrum of complete multipartite graph 𝐾𝐾𝑛𝑛(2)(3) for 𝑛𝑛 ∈ ℕ is  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿(𝐾𝐾𝑛𝑛(2)(3)) = �2𝑛𝑛 + 3 2𝑛𝑛 + 1 2𝑛𝑛 0
𝑛𝑛 𝑛𝑛 2 1� 

Proof: The characteristic polynomial of Laplacian matrix 𝐿𝐿(𝐾𝐾𝑛𝑛(2)(3)) is  
𝑠𝑠(𝜆𝜆) = 𝜆𝜆(𝜆𝜆 − 2𝑛𝑛)2(𝜆𝜆 − (2𝑛𝑛 + 1))𝑛𝑛(𝜆𝜆 − (2𝑛𝑛 + 3))𝑛𝑛. � 
Theorem 7: The Laplacian spectrum of complete multipartite graph 𝐾𝐾𝑛𝑛(3)(4) for 𝑛𝑛 ∈ ℕ is  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿(𝐾𝐾𝑛𝑛(3)(4)) = �3𝑛𝑛 + 4 3𝑛𝑛 + 1 3𝑛𝑛 0
𝑛𝑛 2𝑛𝑛 3 1� 

Proof: The characteristic polynomial of Laplacian matrix 𝐿𝐿(𝐾𝐾𝑛𝑛(3)(4)) is  
𝑠𝑠(𝜆𝜆) = 𝜆𝜆(𝜆𝜆 − 3𝑛𝑛)3(𝜆𝜆 − (3𝑛𝑛 + 1))2𝑛𝑛(𝜆𝜆 − (3𝑛𝑛 + 4))𝑛𝑛. � 
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 From Theorem 6 and Theorem 7, if we set n = 1 then we have 𝐾𝐾1(2)(3) = 𝐾𝐾(2)(3) and 𝐾𝐾1(3)(4) = 
𝐾𝐾(3)(4). We see that the Laplacian spectra for these two graphs can be computed using Theorem 4. For more 
general result, we have the following theorem.  

Theorem 8: The Laplacian spectrum of complete multipartite graph 𝐾𝐾𝑛𝑛(𝑚𝑚)(𝑚𝑚 + 1) for m, 𝑛𝑛 ∈ ℕ and m ≥ 
2 is  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿(𝐾𝐾𝑛𝑛(𝑚𝑚)(𝑚𝑚 + 1)) = �𝑛𝑛𝑚𝑚 + 𝑚𝑚 + 1 𝑛𝑛𝑚𝑚 + 1 𝑛𝑛𝑚𝑚 0
𝑛𝑛 𝑛𝑛(𝑚𝑚− 1) 𝑚𝑚 1� 

Proof: We can observe that characteristic polynomial of Laplacian matrix 𝐿𝐿(𝐾𝐾𝑛𝑛(1)(2)) is  
𝑠𝑠(𝜆𝜆) = 𝜆𝜆(𝜆𝜆 −𝑚𝑚𝑛𝑛)𝑚𝑚(𝜆𝜆 − (𝑚𝑚𝑛𝑛 + 1))(𝑚𝑚−1)𝑛𝑛(𝜆𝜆 − (𝑚𝑚𝑛𝑛 + 𝑚𝑚 + 1))𝑛𝑛 

The following theorem can be used to determine the Laplacian spectrum of complete multipartite graph K(1, 
2, 3, …, n) for 𝑛𝑛 ∈ ℕ and n ≥ 2. 

Theorem 9: The characteristic polynomial of L(K(1, 2, 3, …, n) for 𝑛𝑛 ∈ ℕ and n ≥ 2 is  

𝑠𝑠(𝜆𝜆) = 𝜆𝜆 �𝜆𝜆 − �
𝑛𝑛(𝑛𝑛 + 1)

2
− 𝑛𝑛��

𝑛𝑛−1

�𝜆𝜆 − �
𝑛𝑛(𝑛𝑛 + 1)

2
− (𝑛𝑛 − 1)��

𝑛𝑛−2

⋯�𝜆𝜆

− �
𝑛𝑛(𝑛𝑛 + 1)

2
���𝜆𝜆 − �

𝑛𝑛(𝑛𝑛 + 1)
2

��
𝑛𝑛−1

 

Proof: Using Gaussian elimination method to Laplacian matrix L(K(1, 2, 3, …, n) will leads to the desired 
result. � 

Theorem 10: The signless Laplacian spectrum of complete bipartite graph K2(m) for 𝑚𝑚 ∈ ℕ and m ≥ 2 is  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿(𝐾𝐾2(𝑚𝑚)) = �2𝑚𝑚 𝑚𝑚 0
1 2(𝑚𝑚 − 1) 1� 

Proof: By the fact that Laplacian spectrum and signless Laplacian spectrum of bipartite graphs are always 
equal, then the proof follows from Theorem 1. � 

Theorem 11: The signless Laplacian spectrum of complete tripartite graph K3(m) for 𝑚𝑚 ∈ ℕ and m ≥ 2 is  

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿(𝐾𝐾2(𝑚𝑚)) = �4𝑚𝑚 2𝑚𝑚 𝑚𝑚
1 3(𝑚𝑚 − 1) 2 � 

Proof: We can observe that characteristic polynomial of signless Laplacian matrix Q(K3(m)) is  
𝑠𝑠(𝜆𝜆) = (𝜆𝜆 − 4𝑚𝑚)(𝜆𝜆 − 2𝑚𝑚)3(𝑚𝑚−1)(𝜆𝜆 − 𝑚𝑚)2. � 
Theorem 12: The signless Laplacian spectrum of complete bipartite graph K(m, m+1) for m ≥ 2 and 𝑚𝑚 ∈ ℕ 

is 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿�𝐾𝐾(𝑚𝑚,𝑚𝑚 + 1)� = �2𝑚𝑚 + 1 𝑚𝑚 + 1 𝑚𝑚 0

1 𝑚𝑚 − 1 𝑚𝑚 1� 
Proof: By the fact that Laplacian spectrum and signless Laplacian spectrum of bipartite graphs are always 

equal, then the proof follows from Theorem 4. � 
 The following theorem is presented without proof. It is easy to be observed from the characteristic 

polynomial of the Laplacian matrix of 𝐾𝐾𝑛𝑛(1)(2) for 𝑛𝑛 ∈ ℕ. 
Theorem 13: The Laplacian spectrum of complete multipartite graph 𝐾𝐾𝑛𝑛(1)(2) for 𝑛𝑛 ∈ ℕ is 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝐿𝐿�𝐾𝐾𝑛𝑛(𝑚𝑚)� = �
3𝑛𝑛
2

+ �13𝑛𝑛 − 6
4

𝑛𝑛
3𝑛𝑛
2
−�13𝑛𝑛 − 6

4
1 𝑛𝑛 1

� 

 
 
 

CONCLUSION 
 
We have determined the Laplacian and signless Laplacian spectra of several complete multipartite graphs. 
Because there are many kinds of complete multipartite graphs according to the cardinality of each partition sets, 
so the further studies can be done to determine the Laplacian and signless Laplacian spectra of another complete 
multipartite graphs. Further studies also can be done to determine another spectrum of these graphs.   
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