Total Lipid and Morphology Microalgae Skeletonema costatum on Nitrogen Nutrition Physiological Stress

Main Article Content

Endang Purwanti Setyaningsih Tutik Nurhidayati Virlia Alvionita C Sri Nurhatika Dini Ermavitalini Anton Muhibudin Kristanti Indah Purwani Edwin Setyawan

Abstract

Biodiesel is an alkyl ester compounds produced by alcoholysis of triglycerides and methanol or ethanol with the aid of an alkaline catalyst. Indonesia is rich in marine resources, one of which is a microalgae. Microalgae can make alternative as a raw material for biodiesel. This study aimed to influence physiological stress nutrient nitrogen to total lipid content of microalgae Skeletonema costatum. The method used is the intermediate-scale culture 100 L. Harvesting microalgae as a candidate biodiesel is done is done at the end of the exponential phase. Parameters measured were total lipid content using the Soxhlet. Total lipids were analyzed using ANOVA test followed to Dunnet test Test. The results showed that nitrogen stress affects the lipid content of Skeletonema costatum. On media without nitrogen has the highest lipid content of 0, 0690%. Morphology microalgae Skeletonema costatum decreased form chloroplasts in all treatments compared to controls.

Article Details

How to Cite
SETYANINGSIH, Endang Purwanti et al. Total Lipid and Morphology Microalgae Skeletonema costatum on Nitrogen Nutrition Physiological Stress. Proceedings of the International Conference on Green Technology, [S.l.], v. 8, n. 1, p. 187-190, nov. 2017. ISSN 2580-7099. Available at: <http://conferences.uin-malang.ac.id/index.php/ICGT/article/view/579>. Date accessed: 25 apr. 2024. doi: https://doi.org/10.18860/icgt.v8i1.579.
Section
Biology

References

[1] E. Syahrial. Kajian Supply Demand Energy. Pusat Data dan Informsi Energi dan Sumber Daya Mineral Kementrian Energi dan Sumber Daya Mineral. Jakarta: ESDM (2012).
[2] J. Musanif. Biodesel. Direktorat Pengolahan Hasil Pertanian. Ditjen Pengolahan dan Pemasaran Hasil Pertanian. Vol 1 ed 1 (2015).
[3] B. Juniata, A. W. Setyo. Optimasi Proses Pembuatan Biodiesel dari mikroalga Chlorella sp. Penelitian. Semarang: Teknik Kimia. Fakultas teknik Universitas Diponegoro (2011).
[4] A. Eryanto. Suatu Pendekatan Biologi dan Manajemen Plankton dalam Budidaya Udang . Surabaya: PT. CPB (2003).
[5] N. Abdulgani, A.F.M Zuhdi. Potensi Mikroalga Skeletonema costatum, Chorella vulgaris dan Spirulina platensis sebagai Bahan Baku Biodiesel. ITS research. 10983-131879378 (2007).
[6] Andersen. R.A. Algal Culturing Technique. UK: Elsevier Academic Press (2005).
[7] Sartika. Kandungan Klorofil dan lipid Nanochloropsis aculata yang dikultur dalam Media limbah cair karet. Jurnal ProtoBiont. Vol 3 (3) (2014) 25-30.
[8] H. Hu, K Gao. Response of Growth and Fatty Acid Compositions of Nannochloropsis sp. to Environmental Factor Under Elevated CO2 Concentration. Biotechnology Letters. (28) (2006) 987-992.
[9] R.A. Widyaningsih, R. Hartati dan Harmoko. Kandungan Nutrisi Spirulina platensis yang Dikultur pads Media yang Berbeda. Jurnal Ilmu Kelautan (13) (3) (2008) 167-170.
[10] F. Shahidi. Extration and Measurment of Total Lipids Curren Protocols in Food Analysis Chemistry. DO1: 10: 1002/ 0471142913.fad0101s07 (2003).
[11] I. Pratama. Penggunaan Konsentrasi Pupuk Cair Azola pinnata terhadap Kepadatan Populasi dan Kandungan Protein Skeletonema costatum. Usulan Penelitian. Malang: Jurusan Perikanan Fakultas Pertanian Perternakan Universitas Muhamadiyah (2013).
[12] Y. Kulinsky. The Effect of Nitrogen Deprivation on the Growth Oil Yield and Fatty Acid Production of The Diatom Phaeodactylum tricornotum and Nitchia sp. In Laboratory Culture. Thesis. School Of Environmental Science and Management Southern Cross University (2009).
[13] A. Juneja, M. C. Ruben, dan S. M. Ganti. Effect of Enviromental Factors and Nutrient Availability on the Biochemical Compasition of
Algae for Biofuels Production: A Riview. Journal Energies. (6) (2013) 4607- 4638.
[14] A. El-sheekh, A. Abomohra, dan D. Hanelt. Optimation of Biomass and Fatty Acid Productivity of Scenedesmus Obliquos as a Promising Microalga for Biodiesel Production. Journal of Microbiology and Biotechnology. (29) (2013) 915-922.
[15] K. K. Sharma, S. Holger, dan M. S. Peer. High Lipid Introduction in Microalgae for Biodiesel Production. Journal Energies. (5) (2012) 1532- 1553.
[16] G Ahlgren, P. Hyenstrand. Nitrogen Limitation Effect of Different Nitrogen Sources on The Nutritional Quality of Two Fresh Water Organism Scenedesmus quadricouda (Chlorophyceae) and Synechoccus sp. (Cyanophyceae). Journal of Phycology. (39) (2003) 906-917.
[17] N. L. Hockin, M. Thomas, M. Francis, K. Stanislav dan M. Gill. The Response of Diatom Central Carbon Metabolism to Nitrogen Starvation is Different from That of Green Algae and Higher Plant. Journal Plant Physiology. (158) (2012) 299-312.
[18] P.G. Octavio, M. E. E. Froylan, E. D. Luz, B. Yoav. Review Heterotrophic Culture of Microalgae: Metabolism and Potential Product. Journal Water Reseach. (45) (2011)11-36.
[19] Q. Hu, S. Milton, J. Eric, G. Maria, P, Michael, S. Matthew, P. Al. Microalgal Triacylglycerols as Feedstock for Biofuel Production: Presspectives and Advances. Plant Journal. (54)( 2008) 621-639.
[20] I. Khozin-Goldberg, C. Bigogno, P. Shreshta, Z. Cohen. Nitrogen Starvation Induces The Accumulation of Arachidonic Acid in The Fresh Water Green Alga Parietochloris incisa (Trebouxiophyceae). Journal Phycol. (38)( 2002) 991-994.