Measurement of Action Result of Eliminating Bivariate based Cook’s D: Cell Concentration and Turbidity

Main Article Content

Ahmad Syauqi Hari Santoso Siti Nurul Hasana

Abstract

The method of turbidimetry interprets the effects of light scattering of the cell particles consisting of the mean of cell concentration. The relation between number of cell particles and turbidity has not been adequately expressed particularly to bivariate statistically. The objective of this paper is to discuss the action result of eliminating a bivariate-based Cook’s D analysis, which can be measured with relative error of cell quantification
in turbidimetry. Experiments were designed to research the regression design on two paired variables (bivariate), and according to the linear relationship characteristic between suspended solid and turbidity. Variables consisted of cell concentration and turbidity. Paired sample size was ten data as a dataset and replicated five times. The diagnosis of regression on linearity parameter against five sets of data was used as assumption of covariance analysis, backward method–residual analysis of Cook’s D, and then measured by relative error value of cell concentration result by a turbidity value. The regression diagnostic of plotting fifty bivariate had the heterochedastisity character with five slopes being not homogenous. The diagnosis a linier curve was performed and elimination action toward to a bivariate at the furthest point using Cook’s Distance value. One
dataset gives the lowest relative error result of cell quantification and become consideration in turbidimetry as a standard curve.

Article Details

How to Cite
SYAUQI, Ahmad; SANTOSO, Hari; HASANA, Siti Nurul. Measurement of Action Result of Eliminating Bivariate based Cook’s D: Cell Concentration and Turbidity. Proceedings of the International Conference on Green Technology, [S.l.], v. 9, n. 1, p. 1-5, jan. 2019. ISSN 2580-7099. Available at: <http://conferences.uin-malang.ac.id/index.php/ICGT/article/view/841>. Date accessed: 20 nov. 2019.
Section
Pure and Applied Mathematics

References

[1] A. Hannouche, C Ghassan, G. Ruban, B. Tassin, B. Lemaire, “Relationship between turbidity and total suspended solids concentration
within a combined sewer system.” Water Science and Technology 64(12), pp. 2445-52 <10.2166/wst.2011.779>, 2011.
[2] K.E.Muller, M.C. Mok, “The distribution of Cook’s D statistic.”Communication Stat Theory Methods 26(3), pp. 525-546, Doi:10.1080/ 03610927708831932, 2011.
[3] Sugiyono, Statistik Nonparametrik untuk Penelitian. Alfabeta, Bandung:2012, p. 13.
[4] Stang, Aplikasi Statistik Multivariat dalam Penelitian Kesehatan. Jakarta: Mitra Wacana Media, 2017.
[5] R.K. Sembiring, Analisis Regresi, Edisi kedua, Bandung: Penerbit ITB, 2003, p. 195.
[6] C. Trihendradi, Kupas Tuntas Analisis Regresi Strategi Jitu Melakukan Analisis Hubungan Causal. Yogyakarta:Andi, 2007, p. 25.
[7] A. Syauqi, H. Santoso dan S.N. Hasana. “Dispersi agregat sel Saccharomyces cerevisiae tersuspensi dalam air dengan pengaruh kimiafisik.”
in Prosiding Seminar Nasional Biologi 2018 Biodiversitas: Pembelajaran, Penelitian, dan Penerapannya dalam Pengelolaan
Lingkungan. Bandung : Pusat Penelitian dan Penerbitan UIN SGD. 2018, p 41-47.
[8] A. Syauqi, H. Santoso dan S.N. Hasana. “Dispersi dan Prosedur Dispersi Agregat Sel Saccharomyces cerevisiae.” unpublished.
[9] A. Syauqi. “Standard Curve of Biuret-Spectrofotometry Using Amonia for Protein Molecule.” unpublished.
[10] A. Syauqi, “Comparative method of references and protein quantifications using Biuret-spectrophotometric.” Chimica et Natura Acta
(Jcena), inpress
[11] M.F. Qudratullah. Analisis Regresi Terapan Teori, Contoh Kasus dan Aplikasi dengan SPSS. Yogyakarta: Andi. 2013, p 3-4.
[12] Y.D. Setyningsih, dan Noeryanti. “Penggunaan Metode Weight Least Square untuk Mengatasi Masalah Heterokedastisitas dalam Analisis
Regresi (Studi Kasus pada Balita Gizi Buruk Tahun 2014 di Provinsi Jawa Tengah).” Jurnal Statistika Industri ddan Komputasi 2(1), pp. 51-
58, 2017.
[13] N. Hanifah, N. Heryanto dan F. Agustina. “Penerapan Model Weighted Lest Square untuk Mengatasi Heterokedastisitas pada Analisis Regesi
Linier.” J. EurekaMatika 3(1), pp. 105-114, 2015.
[14] A. van Laar and A. Akca. Forest Mensuration. Dordrecht: e-book of Springer. p. 124, 2007.