Tahapan Penalaran Analogi dalam Menyelesaikan Masalah Analogi Indirect

Main Article Content

Kristayulita Kristayulita Toto Nusantara Abdur Rahman As’ari Cholis Sa’dijah

Abstract

Tujuan penelitian ini untuk mengidentifikasi tahapan penalaran analogi dalam menyelesaikan masalah analogi indirect. Desain penelitian menggunakan pendekatan kualitatif. Penelitian dilakukan pada siswa Sekolah Menengah Atas Negeri 2 Mataram di kota Mataram. Instrumen yang digunakan berupa masalah analogi yang terdiri atas masalah sumber tentang persamaan kuadrat dan masalah target tentang persamaan trigonometri. Hasil penelitian menunjukan bahwa siswa melakukan penalaran analogi dalam menyelesaikan masalah analogi yang diberikan. siswa dalam menyelesaikan masalah analogi indirect tidak hanya  menggunakan tahapan penalaran analogi yang ada. Akan tetapi, siswa melakukan tahapan sebelum melakukan tahapan penalaran analogi berdasarkan  Ruppert. Tahapan tersebut disebut dengan tahapan represetation and mathematical modeling, yang dilanjutkan dengan tahapan penalaran analogi yang telah ada. Sehingga tahapan penalaran analogi yang dilakukan siswa dalam menyelesaikan masalah analogi indirect adalah represetation and mathematical modeling, structuring, mapping, applying, dan verifying. Artinya ada tahapan penalaran analogi yang dikembangkan dari Ruppert.  Tahapan  penalaran analogi dalam menyelesaikan masalah tergantung dari masalah analogi yang diberikan.

Article Details

How to Cite
KRISTAYULITA, Kristayulita et al. Tahapan Penalaran Analogi dalam Menyelesaikan Masalah Analogi Indirect. Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami), [S.l.], v. 3, n. 1, p. [437-443], feb. 2020. Available at: <http://conferences.uin-malang.ac.id/index.php/SIMANIS/article/view/1184>. Date accessed: 06 apr. 2020.
Section
Mathematics Education

References

[1] P. No, “Tahun 2007 Tentang Standar Proses Pembelajaran,” 41.
[2] K. J. Holyoak and R. G. Morrison, The Cambridge handbook of thinking and reasoning, vol. 137. Cambridge University Press Cambridge, 2005.
[3] E. Melis and M. Veloso, “Analogy in problem solving,” in Handbook of practical reasoning: Computational and theoretical aspects, 1998.
[4] D. Gentner and J. Loewenstein, “Relational language and relational thought,” Lang. Lit. Cogn. Dev. Dev. Consequences Symb. Commun., pp. 87–120, 2002.
[5] M. Bassok and K. J. Holyoak, “Interdomain transfer between isomorphic topics in algebra and physics.,” J. Exp. Psychol. Learn. Mem. Cogn., vol. 15, no. 1, p. 153, 1989.
[6] M. Bassok and K. J. Holyoak, “Pragmatic knowledge and conceptual structure: Determinants of transfer between quantitative domains.,” in Based on a paper presented at the symposium" Transfer on Trial," held at the Annual Meeting of the American Education Research Association, Boston, MA, Apr 1990., 1993.
[7] L. V. Stiff and F. R. Curcio, Developing Mathematical Reasoning in Grades K-12. 1999 Yearbook. ERIC, 1999.
[8] A. B. Bernardo, “Analogical problem construction and transfer in mathematical problem solving,” Educ. Psychol., vol. 21, no. 2, pp. 137–150, 2001.
[9] L. D. English, Mathematical and analogical reasoning of young learners. Routledge, 2004.
[10] M. Ruppert, “Ways of analogical reasoning-thought processes in an example based learning environment,” in Eighth Congress of European Research in Mathematics Education (CERME 8), 2013, pp. 6–10.
[11] J. W. Creswel, “Research design: Qualitative, quantitative, and mixed methods approaches,” Los Angel. Univ. Nebraska–Lincoln, 2009.
[12] C. Dym, Principles of mathematical modeling. Academic press, 2004.
[13] H. Freudenthal, Revisiting mathematics education: China lectures, vol. 9. Springer Science & Business Media, 2006.
[14] N. P. Loc and M. H. Hao, “Teaching Mathematics Based On ‘Matheatization’ of Theory of Realistic Mathematics Education: A Study of the Linear Fungtion Y= Ax+ B,” Int. J. Eng. Sci. IJES, vol. 5, no. 6, pp. 20–23, 2016.
[15] C. Eliasmith and P. Thagard, “Integrating structure and meaning: A distributed model of analogical mapping,” Cogn. Sci., vol. 25, no. 2, pp. 245–286, 2001.
[16] H. Gust, U. Krumnack, K.-U. Kühnberger, and A. Schwering, “Analogical Reasoning: A Core of Cognition.,” KI, vol. 22, no. 1, pp. 8–12, 2008.
[17] B. Falkenhainer, K. D. Forbus, and D. Gentner, “The structure-mapping engine: Algorithm and examples,” Artif. Intell., vol. 41, no. 1, pp. 1–63, 1989.
[18] J. E. Hummel and K. J. Holyoak, “Distributed representations of structure: A theory of analogical access and mapping.,” Psychol. Rev., vol. 104, no. 3, p. 427, 1997.
[19] J. E. Hummel and K. J. Holyoak, “Distributed representations of structure: A theory of analogical access and mapping.,” Psychol. Rev., vol. 104, no. 3, p. 427, 1997.
[20] D. Gentner, K. J. Holyoak, K. J. Holyoak, and B. N. Kokinov, The analogical mind: Perspectives from cognitive science. MIT press, 2001.
[21] D. Gentner, “Metaphor as structure mapping: The relational shift,” Child Dev., pp. 47–59, 1988.
[22] U. Goswami, Analogical reasoning in children. Psychology Press, 2013.
[23] R. J. Sternberg, “Component processes in analogical reasoning.,” Psychol. Rev., vol. 84, no. 4, p. 353, 1977.
[24] D. Gentner and C. Clement, “Evidence for relational selectivity in the interpretation of analogy and metaphor,” in Psychology of Learning and Motivation, vol. 22, Elsevier, 1988, pp. 307–358.
[25] M. Ruppert, “Ways of analogical reasoning-thought processes in an example based learning environment,” in Eighth Congress of European Research in Mathematics Education (CERME 8), 2013, pp. 6–10.
[26] K. Kristayulita, T. Nusantara, A. R. As’ari, and C. Sa’dijah, “Identification of Students Errors in Solving Indirect Analogical Problems Based on Analogical Reasoning Components,” in Journal of Physics: Conference Series, 2018, vol. 1028, p. 012154.