Investigasi Proses Visualisasi Matematis: Studi Kasus Siswa Field-Independent Dalam Menyelesaikan Soal Non-Kontekstual
Main Article Content
Abstract
Tujuan penelitian ini untuk investigasi proses visualisasi matematis siswa SMP dalam menyelesaikan soal non-kontekstual. Investigasi proses visualisasi matematis didasarkan pada aspek generation, inspection, scanning, dan transformation. subjek LFI penelitian ini seorang siswa field-independent kelas 8 yang komunikatif. Instrumen penelitian terdiri dati tes GEFT, tes visualisasi, dan pedoman wawancara. Prosedur penelitian meliputi memberikan tes visualisasi matematis berupa soal non-kontekstual, dan wawancara berbasis hasil tes. Analisis data dengan langkah kategorisasi data, reduksi data, paparan data, dan menarik simpulan Hasil penelitian menunjukkan bahwa subjek LFI mengeksplorasi bentuk gambar sesuai dengan urutan kalimat. subjek LFI membayangkan posisi objek sebelum direpresentasikan. subjek LFI menetapkan strategi partisi-objek. subjek LFI menyederhanakan gambar dari objek kompleks. subjek LFI melakukan translasi objek sesuai dengan unsur awal. Terakhir, hasil investigasi proses visualisasi matematis ini sangat penting dalam pembelajaran matematika, terutama pengembangan kurikulum pada siswa sekolah menengah pertama dalam menyelesaikan soal non-kontekstual yang dihubungkan dengan gaya kognitif
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright Notice
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
References
[2]Lavy, Ilana. Dynamic Visualization And The Case Of ‘Stars In Cages’. Proceeding Conference of the International Group for the Psychology of Mathematics Education (Prague: PME, 2006). Vol 4. Pp. 25-32.
[3]Makina, A. & Wessels, D. The Role Of Visualisatio In Data Handling In Grade 9 Within A Problem-Centred Context. University of South Africa. Pretoria Pythagoras (2009), 69, 56-68.
[4]Presmeg, N.. Visualization in High-School Mathematics. For the Learning of Mathematics, Journal Educational Studies of Mathematics (1986), 6(3),42-46
[5]Kosslyn, M. S. Image And Brain: The Resolution of the Imagery Debate. London: W. W. Norton and Company. (1994).
[6]Thornton, S. A Picture is Worth A Thousand Words. (Retrieved February 7, 2003), from http/www.amt . Canberra.edu.au/-sjt/dva.htm
[7]Yin, H. S. Visualization In Primary School Mathematics: Its Roles And Processes In Mathematical Problem Solving. SingTeach Magazine Of The National Institute Of Education. Nanyang Technological University. Singapore. (2010).
[8]Phillips, L. M., Norris , S. P., Macnab. Visualization in Mathematics, Reading and Science Eduaction. Springer Dordrecht Heidelberg. London New York. (2010)
[9]Hershkowitz, R. Visualization In Geometry—Two Sides Of The Coin. Focus on Learning Problems in Mathematics (1990), 11(1), 61–76
[10]Zimmermann, W., & Cunningham, S. Editor’s Introduction: What Is Mathematical Visualization. In W. Zimmerman & S. Cunningham (Eds), Visualisation In Teaching And Learning Mathematics (pp. 1-8). Washington, DC: Mathematical Association of America, (1991).
[11]Zazkis, R., Dubinsky, E. dan Dauterman, J. Using Visual And Analytic Strategies: A Study Of Students Understanding Of Permutation And Symmetry Groups. Journal of Research in Mathematics Education (1996), 27 (4): 435-457.
[12]Makina, A. & Wessels, D. The Role Of Visualisatio In Data Handling In Grade 9 Within A Problem-Centred Context. University of South Africa. Pretoria Pythagoras (2009), 69, 56-68