Pembangkitan Fraktal Koch Anti-Snowflake (m,n,c) Menggunakan Metode Transformasi Affine

Main Article Content

Ellenda Alkhori Alkhori Kosala Dwidja Purnomo Bagus Juliyanto

Abstract

Fractal Koch Anti-Snowflake (m,n,c) is a developmental form of fractal Koch Anti-Snowflake (m,n,c) with variation of m is initiator (basic form) using polygon-m and with variation of n is generator (iteration) using polygon-n. While c the size of the middle segment that removed on each side of initiator. Each iteration on generation procedure of Koch Anti-Snowflake (m,n,c) using affine transformation method will produce several forms, the first form is Koch Anti-Snowflake (m.n,c) that does not intersect with variation of initiator polygon-m, variation of generator polygon-n, and the selected c value that is a half the upper limit value ​​have been specified. The Second forms is Koch Anti-Snowflake (m,n,c) coincide with a variation of the initiator polygon-m, variation of generator polygon-n and there are variation value of  c which is less than half of the upper limit in the value of c selected. The third form is Koch Anti-Snowflake (m,n,c) intersect with a variation of the initiator polygon-m and variation of generator polygon-n, variation of the initiator polygon-m and variation of generator polygon-n with the selected variation c value which is close enough with the  upper limit of  value specified is c-0,00001.

Article Details

How to Cite
ALKHORI, Ellenda Alkhori; PURNOMO, Kosala Dwidja; JULIYANTO, Bagus. Pembangkitan Fraktal Koch Anti-Snowflake (m,n,c) Menggunakan Metode Transformasi Affine. Prosiding SI MaNIs (Seminar Nasional Integrasi Matematika dan Nilai-Nilai Islami), [S.l.], v. 3, n. 1, p. [011-016], feb. 2020. Available at: <http://conferences.uin-malang.ac.id/index.php/SIMANIS/article/view/901>. Date accessed: 28 oct. 2020.
Section
Mathematics

References

[1] Romadiastri, Y. 2013. Batik Fraktal: Pengembangan Aplikasi Geometry Fraktal. Jurnal Matematika, vol. 1(1): 2-25. Semarang: IAIN Walisongo Semarang.
[2] Wesstein, Eric W. 2008. Koch Snowflake. Wolfram Web Resource Mathworld:
http://mathworld.wolfram.com/Kochsnowflake.html [Diakses 2 November 2018].
[3] Wesstein, Eric W. 2008. Koch Anti-Snowflake. Wolfram Web Resource Mathworld:
http://mathworld.wolfram.com/KochAntisnowflake.html [Diakses 20 Januari 2019].
[4] Kaleti, T dan Paquatte, E. 2010. The Trouble With Von Koch Curves Built From n Gons. The American Mathematical Monthly, vol. 117: 124-137.