in Silico Prediction of Caesalpinia sappan L. Secondary Metabolites towards PPARγ

Abstract

Chemotherapy can cause mitochondrial dysfunction and oxidative stress that induces Chemotherapy-induced Peripheral Neurotherapy (CIPN) condition. Inhibition of pro-inflammatory transcription factors by PPARγ agonist can be used to develop CIPN treatment. To find potential compounds from plants, this study conducted an in silico study of the secondary metabolites of Caesalpinia sappan L. In this study, we conducted a molecular docking study of 27 secondary metabolites of Caesalpinia sappan L. using an in silico approach targeting PPARγ (PDB ID: 2PRG) using AutoDockVina software. ADMET characteristics were predicted using the SwissADME and pkCSM Online Tool. The results showed that metabolites from Caesalpinia sappan L. with the strongest affinity for PPARγ were Phanginin D, Phanginin E, Phanginin H, Phanginin A, Phanginin G, Phanginin B, Neosappanone A, and 8-Methoxybonducellin, compared to the native ligand. Therefore, that metabolites potentially to be developed as a treatment for CIPN.

Author Biographies

Alma Nuril Aliyah, Universitas Airlangga

Master Student of Pharmaceutical Science, Universitas Airlangga, Surabaya, Indonesia

Fauz Aulia El Maghfiroh, Universitas Airlangga

Master Student of Pharmaceutical Science, Universitas Airlangga, Surabaya, Indonesia

Fathia Faza Rahmadanita, Universitas Islam Negeri Maulana Malik Ibrahim

Department of Biomedical Science and Clinical Pharmacy, Islamic State University Maulana Malik Ibrahim, Malang, Indonesia

References

Benet, L. Z. et al. (2016) “BDDCS, the Rule of 5 and Drugability,” Advanced drug delivery reviews, 101, hal. 89. doi: 10.1016/J.ADDR.2016.05.007.
Cockfield, J. A. dan Schafer, Z. T. (2019) “Antioxidant Defenses: A Context-Specific Vulnerability of Cancer Cells,” Cancers, 11(8). doi: 10.3390/CANCERS11081208.
Colloca, L. et al. (2017) “Neuropathic pain,” Nature reviews. Disease primers, 3. doi: 10.1038/NRDP.2017.2.
Elkholy, S. E. et al. (2020) “Neuroprotective effects of ranolazine versus pioglitazone in experimental diabetic neuropathy: Targeting Nav1.7 channels and PPAR-γ,” Life sciences, 250. doi: 10.1016/J.LFS.2020.117557.
Fajrin, F. A. et al. (2018) “Molecular Docking Analysis of Ginger Active Compound on Transient Receptor Potential Cation Channel Subfamily V Member 1 (TRPV1),” Indonesian Journal of Chemistry, 18(1), hal. 179–185. doi: 10.22146/IJC.28172.
Imai, S. et al. (2017) “Taxanes and platinum derivatives impair Schwann cells via distinct mechanisms,” Scientific reports, 7(1). doi: 10.1038/S41598-017-05784-1.
Klein, E. A. et al. (2011) “Vitamin E and the Risk of Prostate Cancer: Updated Results of The Selenium and Vitamin E Cancer Prevention Trial (SELECT),” JAMA, 306(14), hal. 1549. doi: 10.1001/JAMA.2011.1437.
Liang, C. H. et al. (2013) “Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis through Caspase-3 Activity and Anthelmintic Activities against Hymenolepis nana and Anisakis simplex,” Evidence-based complementary and alternative medicine : eCAM, 2013. doi: 10.1155/2013/864892.
Lipinski, C. A. et al. (2001) “Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,” Advanced drug delivery reviews, 46(1–3), hal. 3–26. doi: 10.1016/S0169-409X(00)00129-0.
Liu, D. et al. (2005) “Infl ammation Research Rosiglitazone, an agonist of peroxisome proliferator-activated receptor g, reduces pulmonary infl ammatory response in a rat model of endotoxemia,” Infl amm. res, 54. doi: 10.1007/s00011-005-1379-0.
Mut-Salud, N. et al. (2016) “Antioxidant Intake and Antitumor Therapy: Toward Nutritional Recommendations for Optimal Results,” Oxidative Medicine and Cellular Longevity, 2016. doi: 10.1155/2016/6719534.
O‟Connor, A. B. dan Dworkin, R. H. (2009) “Treatment of neuropathic pain: an overview of recent guidelines,” The American journal of medicine, 122(10 Suppl). doi: 10.1016/J.AMJMED.2009.04.007.
Ramírez, D. dan Caballero, J. (2018) “Is It Reliable to Take the Molecular Docking Top Scoring Position as the Best Solution without Considering Available Structural Data?,” Molecules 2018, Vol. 23, Page 1038, 23(5), hal. 1038. doi: 10.3390/MOLECULES23051038.
Seretny, M. et al. (2014) “Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: A systematic review and meta-analysis,” Pain, 155(12), hal. 2461–2470. doi: 10.1016/j.pain.2014.09.020.
Suwan, T. et al. (2018) “Antioxidant activity and potential of Caesalpinia sappan aqueous extract on synthesis of silver nanoparticles,” Drug discoveries & therapeutics, 12(5), hal. 259–266. doi: 10.5582/DDT.2018.01059.
Tewtrakul, S. et al. (2015) “Antiinflammatory and wound healing effects of Caesalpinia sappan L.,” Phytotherapy Research, 29(6), hal. 850–856. doi: 10.1002/PTR.5321.
Villapol, S. (2018) “Roles of Peroxisome Proliferator-Activated Receptor Gamma on Brain and Peripheral Inflammation,” Cellular and Molecular Neurobiology, 38(1), hal. 121–132. doi: 10.1007/s10571-017-0554-5.
Zajaczkowską, R. et al. (2019) “Mechanisms of chemotherapy-induced peripheral neuropathy,” International Journal of Molecular Sciences, 20(6). doi: 10.3390/ijms20061451.
Published
2022-12-05
How to Cite
ALIYAH, Alma Nuril; MAGHFIROH, Fauz Aulia El; RAHMADANITA, Fathia Faza. in Silico Prediction of Caesalpinia sappan L. Secondary Metabolites towards PPARγ. Proceeding Annual Symposium on Hajj and Umrah Medicine, [S.l.], v. 1, p. 42-47, dec. 2022. ISSN 2987-548X. Available at: <http://conferences.uin-malang.ac.id/index.php/anshar/article/view/2134>. Date accessed: 04 may 2024. doi: https://doi.org/10.18860/anshar.v1i0.2134.