A Network Pharmacology of Brotowali (Tinospora cordifolia) on Immunity Cases

Abstract

COVID-19 is a disease outbreak related to the human immune system. The process of spreading very quickly makes this outbreak a dangerous pandemic. COVID-19 cases in 2020 in Indonesia, positive cases were reaching 1,089,308 people with a death rate of 20,277 people as of 2 February 2021. Efforts are being made to reduce and prevent virus transmission by boosting the immune system using an immunomodulator. Based on the literature studies that have been conducted, several Indonesian local plants have potential as immunomodulator. The in silico test was carried out because the computer simulation method has scientific validity, is relatively new, and has a high level of accuracy. This study aims to determine the protein network associated with the body's immune system, which is activated due to the administration of Brotowali (Tinospora Cordifolia). The research method used is exploratory descriptive with in silico analysis using a computational model with online databases, including KNApSAck, Dr. Duke, Pubchem, SwissADME, SwissTargetPrediction, Venny, StringDB, and KEGG. Based on the results of pharmacological network analysis, T. Cordifolia contains 33 secondary metabolites, 25 of which have high bioavailability. Proteins associated with T. cordifolia contain 640 compounds, and those related to immunomodulators contain 1380 proteins. The intersection results obtained 191 proteins predicted to interact with T. cordifolia and are related to immunomodulators. Based on KEGG Pathway analysis, there are five critical pathways in the immunomodulatory system, namely Th17 cell differentiation, IL-17 signaling pathway, T cell receptor signaling pathway, Fc epsilon RI signaling pathway, and TNF signaling pathway. 1-hydroxy-2-methyl-anthraquinone can be an immunomodulator because it interacts with five critical pathways in the immunomodulator system.

References

Aziz, I.R., Armita, D., Hajrah and Makmur, K. (2020) ‘Gen Regulasi Tanaman Lokal Indonesia: Imunomodulator Covid-19’ Jurnal Teknosains 14(2), p. 238–246.
Daina, A., Michielin, O. and Zoete, V. (2019) ‘SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules’ Nucleic Acids Research 47(W1), pp. W357–W3664. doi: 10.1093/nar/gkz382.
Daina, A. and Zoete, V. (2016) ‘A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules’ ChemMedChem, pp. 1117–1121. doi: 10.1002/cmdc.201600182.
Evi Kristhy, M., Afrinna, R. and Jaga Taka, P. (2022) Bijak Berinvestasi Dalam Masa Pandemik Global Covid-19. Available at: https://www.prudential.co.id/id/pulse/article/apa-itu-sebenarnya-pandemi-covid-19-ketahui-juga-.
Fishilevich, S. et al,. (2016) ‘Genic insights from integrated human proteomics in GeneCards. Database 2016’ doi: 10.1093/database/baw030.
Gede, P. and Wira Perdana, R. (2021) ‘Review Artikel: Aktivitas Imunomodulator Ekstrak Herba Meniran (Phyllanthus niruri L.)’
Hehenberger M. (2020) IT Supporting Biomarker-Enabled Drug development. In: Biomarkers In Drug Discovery And Development: A Handbook of Practice, Application, and Srategy . Available at: http://www.fda.gov/cder/genomics/PGX_biomarkers [Accessed: 27 October 2023].
Johan, A.K. (2016) ‘Uji In Silico Senyawa Genistein Sebagai Ligan Pada Reseptor Estrogen Alfa’. Undergraduate Thesis, Yogyakarta: Universitas Sanata Dharma.
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. and Ishiguro-Watanabe, M. (2023) ‘KEGG for Taxonomy-Based Analysis of Pathways and Genomes’ Nucleic Acids Research 51(D1), pp. D587–D592. doi: 10.1093/nar/gkac963.
Kotala, S. and Kurnia, T.S. (2022) ‘Eksplorasi Tumbuhan Obat Berpotensi Imunomodulator Di Kecamatan Leihitu Kabupaten Maluku Tengah’ Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, pp. 186–200. doi: 10.31851/sainmatika.v19i2.9508.
Lena, N., Jamil, A.S., Muchlisin, M.A. and Almutahrihan, I.F. (2023) ‘Analisis Jejaring Farmakologi Tanaman Jati Belanda (Guazuma ulmifolia Lamk.) Sebagai Imunomodulator’ Journal of Islamic Pharmacy 8(1), pp. 1–6. doi: 10.18860/jip.v8i1.20782.
Mahanthesh, M.T., Ranjith, D., Raghavendra, Y., Jyothi, R., Narappa, G. and Ravi, M. (2020) ‘Swiss ADME Prediction of Phytochemicals Present In Butea Monosperma (Lam.) Taub.’ Journal of Pharmacognosy and Phytochemistry 9(3), pp. 1799–1809. Available at: www.phytojournal.com.
Oh, K.K., Adnan, M. and Cho, D.H. (2021) ‘Network Pharmacology Approach to Decipher Signaling Pathways Associated With Target Proteins of NSAIDs Against COVID-19’ Scientific Reports 11(1). doi: 10.1038/s41598-021-88313-5.
Oliveros, J.C. (2015). Venny. An interactive tool for comparing lists with Venn’s diagrams.
Priani, S.E. (2021) ‘The Immunostimulant Activity of Tibb An-Nabawi Natural Products: A Literature Review Kajian Beberapa Bahan Alam Berbasis Thibbun Nabawi yang Memiliki Aktivitas Peningkat Imunitas’. Jurnal Ilmiah Farmasi (Scientific Journal of Pharmacy) 17(1), pp. 46–55. Available at: http://journal.uii.ac.id/index.php/JIF46.
Safran, M. et al. (2022). ‘The GeneCards Suite. In: Practical Guide to Life Science Databases’. Springer Nature, pp. 27–56. doi: 10.1007/978-981-16-5812-9_2.
Shereen, M.A., Khan, S., Kazmi, A., Bashir, N. and Siddique, R. (2020) ‘COVID-19 Infection: Origin, Transmission, and Characteristics of Human Coronaviruses’. Journal of Advanced Research 24, pp. 91–98. doi: 10.1016/j.jare.2020.03.005.
Shofi, M. (2021) ‘Studi In Silico Senyawa Kuarsetin Daun Kencana Ungu (Ruellia tuberosa L.) Sebagai Agen Antikanker Payudara In Silico Study Quarcetine Compounds from Kencana Ungu Leaves (Ruellia tuberosa L.) Agent as An Anti-Cancer Breast’.
Simorangkir, T.P.H., Tuba, S. and Pangsibidang, R.C.A. (2022) ‘The Potential of Indonesian Natural Materials as Immunomodulators and Tonics for National Resilience of Public Health in the Era Covid-19 Pandemic’. Budapet International Research and Critics Institute-Journal 5(2), pp. 10075–10076. Available at: https://doi.org/10.33258/birci.v5i2.4805.
Stelzer, G. et al., (2016) ‘The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses’ Current Protocols in Bioinformatics 2016, pp. 1.30.1-1.30.33. doi: 10.1002/cpbi.5.
Szklarczyk, D. et al., (2021) ‘The STRING database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-uploaded Gene/Measurement Sets’ Nucleic Acids Research 49(D1), pp. D605–D612. doi: 10.1093/nar/gkaa1074.
Szklarczyk, D. et al., (2023) The STRING database in 2023: Protein-Protein Association Aetworks and Functional Enrichment Analyses for Any Sequenced Genome of Interest. Nucleic Acids Research 51(1 D), pp. D638–D646. doi: 10.1093/nar/gkac1000.
Tsamarah, D.F., Izzaturrahmi, A.S. and Sopyan, I. (2023) ‘Sistem Penghantaran Obat Limfatik: Peningkatan Bioavailabilitas Obat dengan Nanopartikel’. Majalah Farmasetika 8(5), p. 475. doi: 10.24198/mfarmasetika.v8i5.47852.
Veda, A.I.H., Muchlisin, M.A., Jamil, A.S. and Almutahrihan, I.F. (2023) ‘Eksakta : Berkala Ilmiah Bidang MIPA Article In Silico Study Potential Secondary Metabolite Candidate of Citronella Grass (Cymbopogon nardus) on Immunity Cases’. EKSAKTA: Berkala Ilmiah Bidang MIPA 24(03), pp. 465–675. Available at: http://www.eksakta.ppj.unp.ac.id/index.php/eksakta
Published
2023-11-13
How to Cite
SUSANTO, Awang Farhan Ferdyan Syah et al. A Network Pharmacology of Brotowali (Tinospora cordifolia) on Immunity Cases. Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), [S.l.], v. 3, p. 28-36, nov. 2023. ISSN 2827-7848. Available at: <http://conferences.uin-malang.ac.id/index.php/planar/article/view/2469>. Date accessed: 04 may 2024. doi: https://doi.org/10.18860/planar.v3i0.2469.