A Network Pharmacology of Beluntas (Pluchea indica) on Immunity Cases

Abstract

COVID-19 is classified as an outbreak related to the human immune system. The process of spreading was indeed quick, which made this outbreak a particularly dangerous pandemic. As of March 10, 2023, Indonesia had recorded 6,738,225 positive cases and 160,941 deaths from COVID-19 in 2020. The aim is to curb virus spread by boosting the immune system through antibody production. Studies suggest that certain Indonesian plants have immunomodulatory potential. This study aimed to determine the protein network associated with the body's immune system, which was activated by giving beluntas (Pluchea Indica). The research method used is descriptive in silico analysis using a online databases: KNApSAck, Dr. Duke, Pubchem, Swiss ADME, Swiss Target Prediction, Gene Cards, Venny, STRING, and KEGG. Based on the results of pharmacological network analysis, the P. indica contains 234 secondary metabolites, 126 of which have high bioavailability. Proteins associated with P. indica contain 1317 compounds, and those related to immunomodulators contain 1380 proteins. 340 proteins were found to have interacted with P. indica, all linked to immunomodulation, suggesting its potential for developing treatments for immune-related disorders through further research Based on KEGG Pathway analysis, there are five critical pathways in the immunomodulatory system, namely Th17 cell differentiation, IL-17 signaling pathway, T cell receptor signaling pathway, Fc epsilon RI signaling pathway, and TNF signaling pathway. There is 17 compound that can be an immunomodulator because it interacts with five critical pathways in the immunomodulator system.

References

Adelina, R. (2018). ‘Mekanisme Katekin Sebagai Obat Antidislipidemia (Uji In Silico)’. Buletin Penelitian Kesehatan, 46(3), p. 147–154. https://doi.org/10.22435/bpk.v46i3.899
Bajorath, J. (2015). Computer-aided drug discovery. In F1000Research (Vol. 4). Faculty of 1000 Ltd. https://doi.org/10.12688/f1000research.6653.1
Bare, Y., Maulidi, A., Sari, D. R. T., and Tiring, S. S. N. D. (2019). ‘Studi in Silico Prediksi Potensi 6-Gingerol sebagai inhibitor c-Jun N-terminal kinases (JNK)’. Jurnal Jejaring Matematika Dan Sains, 1(2), p. 59–63. https://doi.org/10.36873/jjms.v1i2.211
Daina, A., Michielin, O., and Zoete, V. (2017). ‘SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules’. Scientific Reports, 7(March), p. 1–13. https://doi.org/10.1038/srep42717
Daina, A., Michielin, O., and Zoete, V. (2019). ‘SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules’. Nucleic Acids Research, 47(W1), p. W357–W3664. https://doi.org/10.1093/nar/gkz382
Daina, A., & Zoete, V. (2016). ‘A BOILED-Egg to Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules’. ChemMedChem, p. 1117–1121. https://doi.org/10.1002/cmdc.201600182
Feng, Z., Lu, X., Gan, L., Zhang, Q., and Lin, L. (2020). ‘Xanthones, a promising anti-inflammatory scaffold: Structure, activity, and drug likeness analysis In Molecules’. MDPI AG. 25(3) https://doi.org/10.3390/molecules25030598
García-Beltrán, O., Urrutia, P. J., & Núñez, M. T. (2023). ‘On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment of Parkinson’s Disease’. Antioxidants, 12(2). https://doi.org/10.3390/antiox12020214
Grabowski, P., & Rappsilber, J. (2019). ‘A Primer on Data Analytics in Functional Genomics: How to Move from Data to Insight? , Trends in Biochemical Sciences, 44(1), p. 21–32. https://doi.org/10.1016/j.tibs.2018.10.010
Hehenberger, M. (2020). ‘IT Supporting Biomarker-Enabled Drug Development. In R. Rahbari, J. Van Niewaal, & M. R. Bleavins (Eds.)’. Biomarkers in Drug Discovery and Development: A Handbook of Practice, Application, and Strategy (Second Edition). http://www.fda.gov/cder/genomics/PGX_biomarkers
Hopkins, A. L. (2007). ‘Network Pharmacology’. Nature Biotechnology, 25, p. 1110–1111. http://www.nature.com/naturebiotechnology
Istyastono, E. P., Radifar, M., Yuniarti, N., Prasasty, V. D., & Mungkasi, S. (2020). ‘PyPLIF HIPPOS: A Molecular Interaction Fingerprinting Tool for Docking Results of AutoDock Vina and PLANTS’. Journal of Chemical Information and Modeling, 60(8), p. 3697–3702. https://doi.org/10.1021/acs.jcim.0c00305
Johns Hopkins University. (2023, August 19). COVID-19 Dashboard by the Center for Systems Science and Engineering (CSSE) at Johns Hopkins University (JHU).
Jung, J. H., Hwang, J., Kim, J. H., Sim, D. Y., Im, E., Park, J. E., Park, W. Y., Shim, B. S., Kim, B., and Kim, S. H. (2021). ‘Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms’. Seminars in Cancer Biology, 68, p. 164–174. https://doi.org/10.1016/j.semcancer.2019.12.009
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). ‘KEGG for taxonomy-based analysis of pathways and genomes’. Nucleic Acids Research, 51(D1), p. D587–D592. https://doi.org/10.1093/nar/gkac963
Labibah, L., & Rusdiana, T. (2022). ‘Hubungan Jenis Kelamin terhadap Eksipien Farmasi dalam Mempengaruhi Bioavailabilitas Obat’. Majalah Farmasetika, 7(3), p. 176. https://doi.org/10.24198/mfarmasetika.v7i3.38443
Lawal, B., Liu, Y. L., Mokgautsi, N., Khedkar, H., Sumitra, M. R., Wu, A. T. H., & Huang, H. S. (2021). ‘Pharmacoinformatics and preclinical studies of nsc765690 and nsc765599, potential stat3/cdk2/4/6 inhibitors with antitumor activities against nci60 human tumor cell lines’. Biomedicines, 9(1), p. 1–22. https://doi.org/10.3390/biomedicines9010092
Lena, N., Jamil, A. S., Muchlisin, M. A., and Almutahrihan, I. F. (2023). ‘Analisis Jejaring Farmakologi Tanaman Jati Belanda (Guazuma ulmifolia Lamk.) Sebagai Imunomodulator’. Journal of Islamic Pharmacy, 8(1), p. 1–6. https://doi.org/10.18860/jip.v8i1.20782
Makatita, F. A., Wardhani, R., and Nuraini. (2020). ‘Riset in silico dalam pengembangan sains di bidang pendidikan, studi kasus: analisis potensi cendana sebagai agen anti-aging’. Jurnal ABDI, 2(1), p. 59–67.
Naveed, M., Shabbir, M. A., Ain, N. U., Javed, K., Mahmood, S., Aziz, T., Khan, A. A., Nabi, G., Shahzad, M., Alharbi, M. E., Alharbi, M., and Alshammari, A. (2023). ‘Chain-Engineering-Based De Novo Drug Design against MPXVgp169 Virulent Protein of Monkeypox Virus: A Molecular Modification Approach’. Bioengineering, 10(1). https://doi.org/10.3390/bioengineering10010011
Nguyen-Vo, T. H., Nguyen, L., Do, N., Nguyen, T. N., Trinh, K., Cao, H., and Le, L. (2020). ‘Plant Metabolite Databases: From Herbal Medicines to Modern Drug Discovery’. Journal of Chemical Information and Modeling, 60(3), p. 1101–1110. https://doi.org/10.1021/acs.jcim.9b00826
Nurhalimah, H. (2014). ‘Efek Antidiare Ekstrak Daun Beluntas (Pluchea Indica L.) Terhadap Mencit Jantan Yang Diinduksi Bakteri Salmonella Thypimurium [In Press Juli 2015]’. Jurnal Pangan dan Agroindustri, 3(3), p. 1083–1094. http://jpa.ub.ac.id/index.php/jpa/article/view/231
Oliveros J. (2015). Venny. An interactive tool for comparing lists with venn’s diagrams.
Panova, E. V., Voronina, J. K., and Safin, D. A. (2023). ‘Copper(II) Chelates of Schiff Bases Enriched with Aliphatic Fragments: Synthesis, Crystal Structure, In Silico Studies of ADMET Properties and a Potency against a Series of SARS-CoV-2 Proteins’. Pharmaceuticals, 16(2). https://doi.org/10.3390/ph16020286
Priani, S. E. (2021). ‘The immunostimulant activity of Tibb an-Nabawi natural products: a literature review’. Jurnal Ilmiah Farmasi, 17(1),p. 46–55. https://doi.org/10.20885/jif.vol17.iss1.art5
Safran, M., Rosen, N., Twik, M., BarShir, R., Stein, T. I., Dahary, D., Fishilevich, S., and Lancet, D. (2021). The GeneCards Suite. Practical Guide to Life Science Databases, p. 27–56. https://doi.org/10.1007/978-981-16-5812-9_2
Sahara, R., & Pristya, T. Y. R. (2022). Jurnal Ilmiah Kesehatan 2022 Jurnal Ilmiah Kesehatan 2022. Jurnal Ilmiah Kesehatan, 21(1), p. 14–19.
Setiawan, H., Wulandari, S. W., and Fitriyani, A. N. (2021). ‘Potensi Imunomodulator Herbal Ekstrak Etanol Daun Pepaya Varietas Calina terhadap Struktur Jaringan Limpa Tikus Putih Galur Wistar’. Jurnal Veteriner, 22(4), p. 531–539. https://doi.org/10.19087/jveteriner.2021.22.4.531
Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Iny Stein, T., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-Golan, Y., Kohn, A., Rappaport, N., Safran, M., and Lancet, D. (2016). ‘The GeneCards suite: From gene data mining to disease genome sequence analyses’. Current Protocols in Bioinformatics, pp. 1.30.1-1.30.33. https://doi.org/10.1002/cpbi.5
Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., and von Mering, C. (2021). ‘Erratum: The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets (Nucleic Acids Research (2021) 49 (D605–D612) DOI: 10.1093/nar/gkaa1074)’. Nucleic Acids Research, 49(18), p. 10800. https://doi.org/10.1093/nar/gkab835
Veda, A. I. H., Muchlisin, M. A., Jamil, A. S., Almutahrihan, I. F., & Satriawan, H. (2023). ‘Eksakta : Berkala Ilmiah Bidang MIPA Article In Silico Study Potential Secondary Metabolite Candidate of Citronella Grass (Cymbopogon nardus) on Immunity Cases’. EKSAKTA: Berkala Ilmiah Bidang MIPA, 23(03), p. 465–675. https://doi.org/10.24036/eksakta/vol24-iss03/418
Wang, X., Wang, Z. Y., Zheng, J. H., & Li, S. (2021). ‘TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches;. In Chinese Journal of Natural Medicines. 19(1). p. 1-11. China Pharmaceutical University. https://doi.org/10.1016/S1875-5364(21)60001-8
Published
2023-11-13
How to Cite
FAUZI, M Amir et al. A Network Pharmacology of Beluntas (Pluchea indica) on Immunity Cases. Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), [S.l.], v. 3, p. 77-92, nov. 2023. ISSN 2827-7848. Available at: <http://conferences.uin-malang.ac.id/index.php/planar/article/view/2474>. Date accessed: 04 may 2024. doi: https://doi.org/10.18860/planar.v3i0.2474.