Potential of Secondary Metabolite of Jasminum sambac as Diabetes Mellitus Medicine by Molecular Docking Method

Abstract

Diabetes mellitus (DM) is a non-infectious disease with a high prevalence in Indonesia. The study explored the potential of the phytochemical component of Jasminum sambac to treat DM. The potential of Jasminum. sambac as a candidate for DM therapy was demonstrated through in silico analysis using several databases and computer-aided drug discovery tools. The bioactive compounds analyzed were obtained from KnapSACK databases. The screening was done to find compounds by estimating bioavailability prediction on the SwissADME. The SwissTargetPrediction tool connects predictions of target proteins from compounds that pass screening to various probable proteins and utilizes the String-DB to show the network between target proteins and associated diseases. After finding the target protein, continue docking the chemical compound to the target protein using PyRx with AutoDock 4.2.6. The search results for the compounds in Jasminum sambac found nine active substances with good bioavailability. The results of the pharmacological network found four proteins associated with Jasminum sambac, among others: GCGR, GSK3B, PPARA, and PPARG. In addition, in-depth analysis was done on the molecular interactions that occurred, how these compounds bind the enzymes found in humans, and their potential to be inhibitors of diabetes mellitus. Proteins such as GCGR, GSK3B, PPARA, and PPARG bind to the compounds found in Jasminum sambac, such as (-)-alpha-cadinol and linalyl benzoate. Thus, it can be said that Jasminum sambac can have anti-diabetic activity.

References

Aihaiti, Y. et al. (2021) ‘Therapeutic Effects of Naringin in Rheumatoid Arthritis: Network Pharmacology and Experimental Validation’, Frontiers in Pharmacology, 12, p. 672054. Available at: https://doi.org/10.3389/FPHAR.2021.672054/FULL.
Azeem, U. and Hakeem, K.R. (2023) ‘Therapeutic mushrooms for diabetes mellitus: Current evidences and future scope’, Therapeutic Mushrooms for Diabetes Mellitus: Current Evidences and Future Scope, pp. 1–289. Available at: https://doi.org/10.1201/9781003332046.
Daina, A., Michielin, O. and Zoete, V. (2019) ‘SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules’, Nucleic Acids Research, 47(W1), p. W357. Available at: https://doi.org/10.1093/NAR/GKZ382.
Daina, A. and Zoete, V. (2016) ‘A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules’, pp. 1117–1121. Available at: https://doi.org/10.1002/cmdc.201600182.
Dwi Hardika, B. et al. (2016) ‘Faktor-faktor yang berhubungan dengan kejadian Diabetes Melitus tipe II’, majority, 16(2). Available at: https://juke.kedokteran.unila.ac.id/index.php/majority/article/view/1073 (Accessed: 30 October 2023).
Gaál, Z. and Balogh, I. (2019) ‘Monogenic Forms of Diabetes Mellitus’, Experientia supplementum (2012), 111, pp. 385–416. Available at: https://doi.org/10.1007/978-3-030-25905-1_18.
Gao, J. et al. (2023) ‘High glucose-induced glucagon resistance and membrane distribution of GCGR revealed by super-resolution imaging’, iScience, 26(2). Available at: https://doi.org/10.1016/J.ISCI.2023.105967.
Ge, S.X. et al. (2020) ‘ShinyGO: a graphical gene-set enrichment tool for animals and plants’, Bioinformatics (Oxford, England), 36(8), pp. 2628–2629. Available at: https://doi.org/10.1093/BIOINFORMATICS/BTZ931.
Harreiter, J. and Roden, M. (2019) ‘[Diabetes mellitus-Definition, classification, diagnosis, screening and prevention (Update 2019)]’, Wiener klinische Wochenschrift, 131(Suppl 1), pp. 6–15. Available at: https://doi.org/10.1007/S00508-019-1450-4.
Hui, L.Y. et al. (2022) ‘Multi-Targeted Molecular Docking and Drug-Likeness Evaluation of some Nitrogen Heterocyclic Compounds Targeting Proteins Involved in the Development of COVID-19’, Medicinal Chemistry, 19(3), pp. 297–309. Available at: https://doi.org/10.2174/1573406418666220616110351.
Jamil, A.S. and Alghifari, M.R. (2023) ‘Insight into Jasminum sambac Molecular Docking Interaction with GCK related to Diabetes Mellitus’, Indonesian Journal of Computational Biology (IJCB), 2(1), p. 40. Available at: https://doi.org/10.24198/ijcb.v2i1.45616.
Jang, E.J. et al. (2023) ‘Correlation between PPARG Pro12Ala Polymorphism and Therapeutic Responses to Thiazolidinediones in Patients with Type 2 Diabetes: A Meta-Analysis’, Pharmaceutics, 15(6). Available at: https://doi.org/10.3390/PHARMACEUTICS15061778/S1.
Jia, Y. et al. (2022) ‘Role of Glucagon and Its Receptor in the Pathogenesis of Diabetes’, Frontiers in Endocrinology, 13. Available at: https://doi.org/10.3389/FENDO.2022.928016.
Khan, I.A. et al. (2021) ‘Jasminum sambac: A Potential Candidate for Drug Development to Cure Cardiovascular Ailments’, Molecules (Basel, Switzerland), 26(18). Available at: https://doi.org/10.3390/MOLECULES26185664.
Kim, S. (2021) ‘Exploring Chemical Information in PubChem.’, Current protocols, 1(8), p. e217. Available at: https://doi.org/10.1002/cpz1.217.
Lena, N. et al. (2023) ‘Analisis Jejaring Farmakologi Tanaman Jati Belanda (Guazuma ulmifolia Lamk.) Sebagai Imunomodulator’, Journal of Islamic Pharmacy, 8(1), pp. 1–6. Available at: https://doi.org/10.18860/jip.v8i1.20782.
Lestari, Zulkarnain and Sijid, S.A. (2021) ‘Diabetes Melitus: Review Etiologi, Patofisiologi, Gejala, Penyebab, Cara Pemeriksaan, Cara Pengobatan dan Cara Pencegahan’, UIN Alauddin Makassar, (November), pp. 237–241. Available at: http://journal.uin-alauddin.ac.id/index.php/psb.
Lin, J. et al. (2020) ‘GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer’, Biochimica et biophysica acta. Molecular cell research, 1867(5). Available at: https://doi.org/10.1016/J.BBAMCR.2020.118659.
Liu, Y. et al. (2020) ‘LC-Q-TOF-MS Characterization of Polyphenols from White Bayberry Fruit and Its Antidiabetic Effect in KK-AyMice’, ACS Omega, 5(28), pp. 17839–17849. Available at: https://doi.org/10.1021/ACSOMEGA.0C02759/SUPPL_FILE/AO0C02759_SI_001.PDF.
Muchlisin, M.A. et al. (2022) ‘Prediksi Bioavaibilitas dan Interaksi Senyawa Metabolit Sekunder Buah Plum (Prunus domestica) Terhadap HMG-CoA Reduktase Secara in silico’, Journal of Pharmacopolium, 5(1), pp. 1–8. Available at: https://doi.org/10.36465/jop.v5i1.875.
Mun, C.S. et al. (2022) ‘Multi-targeted molecular docking, pharmacokinetics, and drug-likeness evaluation of coumarin based compounds targeting proteins involved in development of COVID-19’, Saudi journal of biological sciences, 29(12). Available at: https://doi.org/10.1016/J.SJBS.2022.103458.
Nicholls, S.J. and Uno, K. (2012) ‘Peroxisome proliferator-activated receptor (PPAR α/γ) agonists as a potential target to reduce cardiovascular risk in diabetes’, Diabetes and Vascular Disease Research, 9(2), pp. 89–94. Available at: https://doi.org/10.1177/1479164112441477.
Pinzi, L. and Rastelli, G. (2019) ‘Molecular Docking: Shifting Paradigms in Drug Discovery’, International journal of molecular sciences, 20(18). Available at: https://doi.org/10.3390/IJMS20184331.
Sutan Mulia Ananda and Gemah Nuripah (2022) ‘Uji Aktivitas Senyawa Aktif Daun Sirsak sebagai Kandidat Antidepresan dengan Pendekatan In silico’, Jurnal Riset Kedokteran, pp. 135–172. Available at: https://doi.org/10.29313/jrk.vi.1552.
Szklarczyk, D. et al. (2021) ‘The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets’, Nucleic Acids Research, 49(D1), pp. D605–D612. Available at: https://doi.org/10.1093/nar/gkaa1074
Published
2023-11-13
How to Cite
ALGHIFARI, Mochammad Rehan; JAMIL, Ahmad Shobrun; MUCHLISIN, M Artabah. Potential of Secondary Metabolite of Jasminum sambac as Diabetes Mellitus Medicine by Molecular Docking Method. Proceedings of International Pharmacy Ulul Albab Conference and Seminar (PLANAR), [S.l.], v. 3, p. 93-102, nov. 2023. ISSN 2827-7848. Available at: <http://conferences.uin-malang.ac.id/index.php/planar/article/view/2475>. Date accessed: 04 may 2024. doi: https://doi.org/10.18860/planar.v3i0.2475.