Effectiveness of Mensiang Plants (Actinoscirpus grossus) in Absorbing Linear Alkylbenzene Sulfonates (LAS), Copper (Cu), Nitrate and Phosphate

Main Article Content

Sacinta Julia Astasagita Astasagita Amelia Cahya Putri Rifiah Bayu Agung Prahardika Rony Irawanto

Abstract

Water is essential for all living creatures, but population growth is decreasing its availability. This is due to increased pollution from human activities, including domestic waste (like detergents), industrial waste (such as copper), and agricultural runoff (nitrates and phosphates). Various ways can be done to overcome water pollution, including phytoremediation techniques. One of the aquatic plants that has the potential as a phytoremediation agent is the Actinoscirpus grossus plants. This study aims to assess the ability of Actinoscirpus grossus plants to absorb LAS, Cu metal, nitrate and phosphate with several variations in concentration and determine the response of exposure to LAS, Cu metal, nitrate and phosphate to the growth of Actinoscirpus grossus plants. The method used is an experimental method using a completely randomized design (RAL) with 12 treatments and 3 replications (plant control; LAS 80 mg/L without plants; Cu 5 mg/L without plants; LAS 80 mg/L; Cu 5 mg/L; LAS 80 mg/L + Cu 5 mg/L) and (plant control; nitrate 30 mg/L without plants; phosphate 30 mg/L without plants; nitrate 30 mg/L; phosphate 5 mg/L; and nitrate 30 mg/L + phosphate 5 mg/L) with a detention time of 15 days. The results showed that mensiang plants proved effective in absorbing LAS and Cu contaminants as evidenced by the value of LAS removal power decreased by 74.52% in treatment LAS 80 mg/L + Cu 5 mg/L and Cu metal decreased by 83.40% in treatment Cu 5 mg/L. The effectiveness value of absorption by mensiang plants is most optimal in treatment Cu 5 mg/L which is 62.2%. Meanwhile, the results of the plant's absorption of nitrate 50-92% and 58-84% of nitrate in the combined contamination treatment. Phosphate was able to reduce up to 71-81% and 4-41% of phosphate in the combined contamination treatment. Actinoscirpus grossus plant weight was not significantly affected by nitrate and phosphate contamination. However, Actinoscirpus grossus experienced slight changes in leaf color due to nitrate and phosphate, these changes include leaves turning dark green in phosphate contamination, yellowish green in combination contamination and brown spots in some treatments.

Article Details

How to Cite
ASTASAGITA, Sacinta Julia Astasagita et al. Effectiveness of Mensiang Plants (Actinoscirpus grossus) in Absorbing Linear Alkylbenzene Sulfonates (LAS), Copper (Cu), Nitrate and Phosphate. Proceedings of the International Conference on Green Technology, [S.l.], v. 14, n. 1, dec. 2024. ISSN 2580-7099. Available at: <https://conferences.uin-malang.ac.id/index.php/ICGT/article/view/3216>. Date accessed: 07 feb. 2026.
Section
Biology

References

Andriarna, F., Eva, A., Moch, I. H., Fajar, R. R., & Irul, H. (2022). Kemampuan Tumbuhan Jeruju (Acanthus ilicifolius) dalam Mengadsorpsi LAS (Linear Alkylbenzene Sulfonate) dalam Zat Pencemar yang Mengandung Logam Berat. Jurnal Kimia, 16(2), 244–249.
Budianta,D., & Pambayun, R. (2015). Analisis Kandungan Timbal (Pb) dan Kadmium (Cd) dalam Pempek Rebius dari Beberapa Tempat Jajanan di Kota Palembang Sumatera Selatan. Vol.3, No.2.
Desti, I., & Ula, A. (2021). Analisis Sumber Daya Alam Air. Jurnal Sains Edukatika Indonesia. Vol.3, No.1.
Djo, Y. H. W., Dwi, A. S., Iryanti, E. S., & Wahyu, D. S. (2017). Fitoremediasi Menggunakan Tanaman Eceng Gondok (Eichhornia crassipes) untuk Menurunkan COD dan Kandungan Cu dan Cr Limbah Cair Laboratorium Analitik Universitas Udayana. Cakra Kimia (Indonesian E-Journal of Applied Chemistry), 5(2), 137–144.
Efendi, H. (2003). Telaah Kualitas Air Bagi Pengelolaan Sumber Daya dan Lingkungan. PT Kanisius: Yogyakarta.
Govaerts, R. & Simpson, D.A. (2007). World Checklist of Cyperaceae. Sedges: 1-765. The Board of Trustees of the Royal Botanic Gardens, Kew.
Handayani, L. (2020). Pengaruh Kandungan Deterjen pada Limbah Rumah Tangga terhadap Kelangsungan Hidup Udang Galah (Macrobracium rosenbergii). Sebatik, 24(1), 75–80.
Harmayani, K. D., & Konsukartha, I. G. M. (2007). Pencemaran Air Tanah Akibat Pembuangan Limbah Domestik di Lingkungan Kumuh. Jurnal Permukiman Natah, 5(2), 62–108.
Kustiyaningsih E and Irawanto R. (2020). Pengukuran Total Dissolved Solid (TDS) dalam Fitoremediasi Detergen dengan Tumbuhan Sagittaria lancifolia. Jurnal Tanah dan Sumberdaya Lahan, 7(1) 143-148.
Liu, Z., Islam, M. A., & Huang, J. (2022). Study of the adsorption of methyleneblue by phytoremediation-plant biomass carbon. Journal of Molecular Liquids, 366, 120273.
Maslukah L, Zainuri M, Wirasatriya A, and Widiaratih R. (2020). Studi Kinetika Adsorpsi dan Desorpsi Ion Fosfat (Po42-) Di Sedimen Perairan Semarang dan Jepara. J. Ilmu dan Teknologi Kelautan Tropis, 12(2) 385-396
Maulini, Destiarti L, Rahmalia W and Wahyuni N. (2018). Kinetika Adsorpsi Fenol dalam Asap Cair pada Arang Aktif dari Cangkang Buah Karet (Hevea brasiliensis). Jurnal Kimia Khatulistiwa, 7(4) 51-59
Ni’ma N, Widyorini N and Ruswahyuni. (2014). Kemampuan Apu-apu (Pistia sp.) Sebagai Bioremediator Limbah Pabrik Pengolahan Hasil Perikanan (Skala Laboratorium). Management of Aquatic Resources. Vol. 3(4):257–264.
Novita., Yuliani, & Tarzan, P. (2012). Penyerapan Logam Timbal (Pb) dan Kadar Klorofil Elodea canadensis pada Limbah Cair Pabrik Pulp dan Kertas. Lentera Bio, 1(1), 1–8.
Oppusunggu, J.R., Siregar, V.R., & Masyitah, Z. (2015). Pengaruh Jenis Pelarut dan Temperatur Reaksi pada Sintesis Surfaktan dari Asam Oleat dan n-Metil Glukamina Dengan Katalis Kimia. Jurnal Teknik Kimia. Vol.4, No.1.
Prahardika B A, Retnaningdyah C and Suharjono S. (2013). The control of Microcystis spp. bloom by combining indigenous denitrifying bacteria from Sutami reservoir with Fimbristylis globulosa and Vetiveria zizanoides. J. Trop. Life. Science, 3(1) 52-57
Putriarti, D., Mudloifah, I., Rosyidah, N. F., Putri, M., Zainuddin., Rachmadiarti, 65 F., Fitrihidajati, H., dan Putri, I. L. (2021). Kemampuan Hydrilla verticillata Sebagai Agen Fitoremediasi Linear Alkylbenzene Sulphonate (LAS) Detergen. Prosiding Semnas Bio 2021. Universitas Negeri Padang.
Rachmawati N and Rinawati D. (2020). Profie Adsorben Sebagai Media Filterdalam Menurunkan Konsentrasi Kontaminan pada Badan Air Baku Sungai Cisadane. Medikes, 7(2) 357-364
Rukmi, A. K. (2019). Analisis Kandungan Logam Berat Tembaga (Cu) pada Tiram Bakau (Crassostrea cucullata) dan Air di Pesisir Paciran, Kabupaten Lamongan, Jawa Timur. Skripsi. Fakultas Perikanan dan Ilmu Kelautan. Universitas Brawijaya.
Santosa, D., Nurma, S., Irma, P. D., & Luthfiana, N. A. (2013). Kultur Tunas Scoparia dulcis, Lindernia anagalis, Lindernia ciliata dan Upaya Bioremediasi Terhadap Logam Berat Pb, Cr, Cd. Traditional Medicine Journal, 18, 29–34.
Soedarsono P, Sulardiono B and Bakhtiar R. (2013). The relationship of Nitrate (NO3) & Phosphate (PO4) content on the growth of wet biomass of water hyacon (Eichhornia crassipes) at different locations in the waters of Rawa Pening Ambarawa, Semarang District. Management of Aquatic Resources Journal (MAQUARES), 2(2) 66-72
Suasti N, Daningsih, E and Yokhebed. (2017). Pengaruh Perbedaan Konsentrasi Fosfor terhadap Pertumbuhan Bayam Merah (Blitum rubrum) dengan Sistem Hidroponik Super Mini. Jurnal Pendidikan dan Pembelajaran Khatulistiwa (JPPK), 6(7) 1-12
Suastuti, N. G., Suarsa, I. W., & Dwi, K. P. R. (2015). Pengolahan Larutan Deterjen dengan Biofilter Tanaman Kangkung (Ipomoea crassicaulis) dalam Sistem Batch (Curah) Teraerasi. Jurnal Kimia, 9(1), 98–104.
Sundari, A. S. (2012).Efektivitas Scirpus grossus dan Limnocharis flava sebagai Agen Fitoremediasi Nitrat-Fosfat untuk Mencegah Blooming Microcytis di Ekosistem Perairan Tawar. Skripsi. Jurusan Biologi. Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Brawijaya.
Suryadi, Isna, A., & Ulli, K. (2017). Uji Tanaman Coontail (Ceratophyllum demersum) sebagai Agen Fitoremediasi Limbah Cair Kopi. Jurnal Teknologi Lingkungan Lahan Basah, 5(1).
Syranidou, E., Stavros, C., & Nicolas, K. (2017). Juncus spp.—The Helophyte for All (Phyto)remediation Purposes. New Biotechnology, 38(16), 43–55.
Vymazal J. (2007). Removal of Nutrients in Various Types of Constructed Wetlands. Science of the Total Environment, 380 48-65
Wibisono, I. C. (2018). Penetapan Kadar Surfaktan Anionik pada Deterjen Cuci Cair Secara Metode Titrimetri. Jurnal Ilmu Kimia dan Terapan. Vol.2, No.2.
Widya, C., Badrus, Z., & Syafrudin. (2015). Pengaruh Waktu Tinggal dan Jumlah Kayu Apu (Pistia stratiotes L.) Terhadap Penurunan Konsentrasi BOD, COD dan Warna. Jurnal Teknik Lingkungan, 4(2), 1–8.
Wulandari, S., & Sibarani, L. (2014). Study of Gold Phytomining from Tailing of Amalgamation Using Wild-Cassava (Manihot glaziovii L.). Jurnal Teknologi Mineral Dan Batubara, 10(1), 44–53. https://doi.org/10.30556/JTMB.VOL10.NO1.2014.750.
Yalcin, M. G., Ibrahim, N., & Mustafa, S. (2008). Multivariate Analysis of Heavy Metal Contents of Sediments from Gumusler Creek, Nigde, Turkey. Environ Geol, 54, 1155–1163.
Yong, Z., Liao, B.-H., Zeng, Q.-R., Zeng, M., & Lei, M. (2008). Surfactant Linear Alkylbenzene Sulfonate Effect on Soil Cd Fractions and Cd Distribution in Soybean Plants in a Pot Experiment. Pedosphere, 18(2), 242–247.
Yuliani, R. L., & Purwanti, Y. (2015). Effect of Waste Laundry Detergent Industry Against Mortality and Physiology Index of Nile Tilapia (Oreochromis niloticus). Seminar Nasional XII Pendidikan Biologi FKIP UNS, 822–828.